Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2020, Volume 60, Number 3, Pages 451–461 (Mi zvmmf11047)  

Asymptotically stable periodic solutions in one problem of atmospheric diffusion of impurities: asymptotics, existence, and uniqueness

M. A. Davydova, A. L. Nechaeva

Faculty of Physics, Lomonosov Moscow State University

Abstract: The basis of this work is the use of modern methods of asymptotic analysis in reaction–diffusion–advection problems in order to describe the classical boundary-layer periodic solution of one singularly perturbed problem for the nonlinear diffusion–advection equation. An asymptotic approximation of an arbitrary order of such a solution is constructed, and the formal construction is justified. The uniqueness theorem is proved, the asymptotic Lyapunov stability is established, and the local domain of attraction of the boundary-layer periodic solution is found. One of the applications of this result to atmospheric diffusion problems is discussed, namely, mathematical modeling of the processes of transport and chemical transformation of anthropogenic impurities in the atmospheric boundary layer with allowance for periodic, e.g., daily or seasonal changes. The analytical algorithms developed for this problem as well will form the basis for a new method for calculating daily corrected emission fluxes of anthropogenic impurities from urban sources, which will make it possible to develop improved methods for determining daily integral emissions from the entire territory of a city or a urban agglomeration, based on the use of analytical solutions of model problems in combination with information obtained on a network of atmospheric monitoring stations.

Key words: atmospheric diffusion problems, periodic reactiondiffusionadvection problems, nonlinear diffusion equation, anthropogenic pollution of the atmosphere, photochemical processes in the atmosphere.

Funding Agency Grant Number
Russian Foundation for Basic Research 18-29-10080
This work was supported by the Russian Foundation for Basic Research, project no. 18-29-10080.


DOI: https://doi.org/10.31857/S0044466920030072


English version:
Computational Mathematics and Mathematical Physics, 2020, 60:3, 448–458

Bibliographic databases:

UDC: 517.928
Received: 31.07.2019
Revised: 23.08.2019
Accepted:18.11.2019

Citation: M. A. Davydova, A. L. Nechaeva, “Asymptotically stable periodic solutions in one problem of atmospheric diffusion of impurities: asymptotics, existence, and uniqueness”, Zh. Vychisl. Mat. Mat. Fiz., 60:3 (2020), 451–461; Comput. Math. Math. Phys., 60:3 (2020), 448–458

Citation in format AMSBIB
\Bibitem{DavNec20}
\by M.~A.~Davydova, A.~L.~Nechaeva
\paper Asymptotically stable periodic solutions in one problem of atmospheric diffusion of impurities: asymptotics, existence, and uniqueness
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2020
\vol 60
\issue 3
\pages 451--461
\mathnet{http://mi.mathnet.ru/zvmmf11047}
\crossref{https://doi.org/10.31857/S0044466920030072}
\elib{https://elibrary.ru/item.asp?id=42445968}
\transl
\jour Comput. Math. Math. Phys.
\yr 2020
\vol 60
\issue 3
\pages 448--458
\crossref{https://doi.org/10.1134/S0965542520030070}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000532248600008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85084454964}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf11047
  • http://mi.mathnet.ru/eng/zvmmf/v60/i3/p451

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  •      Computational Mathematics and Mathematical Physics
    Number of views:
    This page:13

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021