Журнал вычислительной математики и математической физики
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Ж. вычисл. матем. и матем. физ.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Ж. вычисл. матем. и матем. физ., 2021, том 61, номер 3, страницы 400–412 (Mi zvmmf11209)  

Обыкновенные дифференциальные уравнения

Редуцированная модель SIR пандемии COVID-19

С. И. Виницкийab, А. А. Гусевa, В. Л. Дербовc, П. М. Красовицкийd, Ф. М. Пеньковe, Г. Чулуунбаатарab

a ОИЯИ, 141980 Дубна, ул. Жолио-Кюри, 6, Россия
b РУДН, 117198 Москва, ул. Миклухо-Маклая, 6, Россия
c СГУ им. Н.Г. Чернышевского, 410012 Саратов, ул. Астраханская, 83, Россия
d ИЯФ, 050032 Алматы, ул. Ибрагимова, 1, Казахстан
e КазНУ им. аль-Фараби, 050040 Алматы, пр-т аль-Фараби, 71, Казахстан

Аннотация: Предложена математическая модель пандемии COVID-19, сохраняющая оптимальный баланс между адекватностью описания пандемии в модели SIR и простотой практических оценок. В качестве базовых уравнений модели дан вывод двухпараметрических нелинейных обыкновенных дифференциальных уравнений первого порядка с запаздыванием по времени, пригодных для описания любого сообщества (страна, город и т.п.). Приведенные примеры моделирования развития пандемии в зависимости от параметров: $\tau $ – время возможного распространения инфекции одним вирусоносителем и $\alpha $ – вероятность инфицирования здорового члена популяции при контакте с инфицированным в единицу времени, например за день, находится в качественном согласии с динамикой пандемии COVID-19. Дано сравнение предложенной модели с моделью SIR. Библ. 18. Фиг. 7.

Ключевые слова: математическая модель, пандемия COVID-19, нелинейные обыкновенные дифференциальные уравнения первого порядка, модель SIR.

DOI: https://doi.org/10.31857/S0044466921030169


Реферативные базы данных:

Тип публикации: Статья
УДК: 51-73
Поступила в редакцию: 12.09.2020
Исправленный вариант: 19.10.2020
Принята в печать:18.11.2020

Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/zvmmf11209

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Просмотров:
    Эта страница:5
     
    Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2021