Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2001, Volume 41, Number 3, Pages 367–373 (Mi zvmmf1359)  

This article is cited in 13 scientific papers (total in 13 papers)

A generalization of the gradient projection method to extremal problems with preconvex constraints

V. I. Zabotin, Yu. A. Chernyaev

Tupolev Kazan State Technical University

Full text: PDF file (1115 kB)
References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 2001, 41:3, 340–346

Bibliographic databases:
UDC: 519.853.6
MSC: Primary 90C30; Secondary 65K05, 90C52
Received: 08.02.2000

Citation: V. I. Zabotin, Yu. A. Chernyaev, “A generalization of the gradient projection method to extremal problems with preconvex constraints”, Zh. Vychisl. Mat. Mat. Fiz., 41:3 (2001), 367–373; Comput. Math. Math. Phys., 41:3 (2001), 340–346

Citation in format AMSBIB
\Bibitem{ZabChe01}
\by V.~I.~Zabotin, Yu.~A.~Chernyaev
\paper A generalization of the gradient projection method to extremal problems with preconvex constraints
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2001
\vol 41
\issue 3
\pages 367--373
\mathnet{http://mi.mathnet.ru/zvmmf1359}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1831693}
\zmath{https://zbmath.org/?q=an:1114.90466}
\transl
\jour Comput. Math. Math. Phys.
\yr 2001
\vol 41
\issue 3
\pages 340--346


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf1359
  • http://mi.mathnet.ru/eng/zvmmf/v41/i3/p367

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Yu. A. Chernyaev, “The conditional gradient method for optimization problems with pre-convex constrains”, Comput. Math. Math. Phys., 43:12 (2003), 1837–1840  mathnet  mathscinet  zmath
    2. Yu. A. Chernyaev, “On a numerical algorithm for optimization problems with pre-convex constraints”, Comput. Math. Math. Phys., 43:2 (2003), 162–167  mathnet  mathscinet  zmath
    3. Yu. A. Chernyaev, “Two algorithms for solving a mathematical programming problem with preconvex constraints”, Comput. Math. Math. Phys., 44:7 (2004), 1165–1169  mathnet  mathscinet
    4. V. I. Zabotin, Yu. A. Chernyaev, “Convergence of an iterative method for a programming problem, which is constrained by a convex smooth surface”, Comput. Math. Math. Phys., 44:4 (2004), 575–578  mathnet  mathscinet  zmath
    5. Yu. A. Chernyaev, “Convergence of the gradient projection method for a class of nonconvex mathematical programming problems”, Russian Math. (Iz. VUZ), 49:12 (2005), 71–74  mathnet  mathscinet
    6. Yu. A. Chernyaev, “An extension of the conditional gradient method to a class of nonconvex optimization problems”, Comput. Math. Math. Phys., 46:4 (2006), 548–553  mathnet  crossref  mathscinet  zmath
    7. T. V. Gruzdeva, A. S. Strekalovskii, “Local search in problems with nonconvex constraints”, Comput. Math. Math. Phys., 47:3 (2007), 381–396  mathnet  crossref  mathscinet  zmath
    8. V. I. Zabotin, T. F. Minnibaev, “The method of feasible directions for mathematical programming problems with preconvex constraints”, Comput. Math. Math. Phys., 48:2 (2008), 242–250  mathnet  crossref  mathscinet  zmath  isi
    9. Yu. A. Chernyaev, “An iterative method for minimizing a convex nonsmooth function on a convex smooth surface”, Comput. Math. Math. Phys., 49:4 (2009), 589–593  mathnet  crossref  mathscinet  zmath  isi
    10. Yu. A. Chernyaev, “Metod Nyutona dlya ekstremalnykh zadach s ogranicheniem v vide vypukloi gladkoi poverkhnosti”, Zh. vychisl. matem. i matem. fiz., 52:2 (2012), 224–230  mathnet  mathscinet  zmath  elib
    11. A. M. Dulliev, “A relaxation method for minimizing a smooth function on a generalized spherical segment”, Comput. Math. Math. Phys., 54:2 (2014), 219–234  mathnet  crossref  crossref  isi  elib  elib
    12. Yu. A. Chernyaev, “An extension of the gradient projection method and Newton's method to extremum problems constrained by a smooth surface”, Comput. Math. Math. Phys., 55:9 (2015), 1451–1460  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    13. V. I. Zabotin, P. A. Chernyshevsky, “Extension of Strongin's global optimization algorithm to a function continuous on a compact interval”, Kompyuternye issledovaniya i modelirovanie, 11:6 (2019), 1111–1119  mathnet  crossref
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:348
    Full text:106
    References:37
    First page:1

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021