Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2001, Volume 41, Number 2, Pages 200–206 (Mi zvmmf1375)  

This article is cited in 3 scientific papers (total in 3 papers)

A monotone nonlocal cubic spline

V. I. Pinchukov

Institute of Computing Technologies, Siberian Branch of the Russian Academy of Sciences, Novosibirsk

Full text: PDF file (1117 kB)
References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 2001, 41:2, 180–186

Bibliographic databases:
UDC: 519.652.1
MSC: Primary 41A15; Secondary 41A25, 65D07
Received: 15.07.1999
Revised: 08.06.2000

Citation: V. I. Pinchukov, “A monotone nonlocal cubic spline”, Zh. Vychisl. Mat. Mat. Fiz., 41:2 (2001), 200–206; Comput. Math. Math. Phys., 41:2 (2001), 180–186

Citation in format AMSBIB
\Bibitem{Pin01}
\by V.~I.~Pinchukov
\paper A monotone nonlocal cubic spline
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2001
\vol 41
\issue 2
\pages 200--206
\mathnet{http://mi.mathnet.ru/zvmmf1375}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1832232}
\zmath{https://zbmath.org/?q=an:1097.41010}
\transl
\jour Comput. Math. Math. Phys.
\yr 2001
\vol 41
\issue 2
\pages 180--186


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf1375
  • http://mi.mathnet.ru/eng/zvmmf/v41/i2/p200

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Yu. S. Volkov, “A new method for constructing cubic interpolating splines”, Comput. Math. Math. Phys., 44:2 (2004), 215–224  mathnet  mathscinet  zmath
    2. Pechstein C., Juettler B., “Monotonicity-preserving interproximation of B-H-curves”, J Comput Appl Math, 196:1 (2006), 45–57  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    3. V. V. Bogdanov, Yu. S. Volkov, “Shape-preservation conditions for cubic spline interpolation”, Siberian Adv. Math., 29:4 (2019), 231–262  mathnet  crossref  crossref
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:449
    Full text:191
    References:38
    First page:1

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022