|
This article is cited in 25 scientific papers (total in 25 papers)
Construction of high-order accurate shock-capturing finite difference schemes for unsteady shock waves
V. V. Ostapenko M. A. Lavrent'ev Institute of Hydrodynamics, Novosibirsk
Full text:
PDF file (5760 kB)
References:
PDF file
HTML file
English version:
Computational Mathematics and Mathematical Physics, 2000, 40:12, 1784–1800
Bibliographic databases:
UDC:
519.6:531.33
MSC: Primary 76M20; Secondary 76L05 Received: 06.01.2000
Citation:
V. V. Ostapenko, “Construction of high-order accurate shock-capturing finite difference schemes for unsteady shock waves”, Zh. Vychisl. Mat. Mat. Fiz., 40:12 (2000), 1857–1874; Comput. Math. Math. Phys., 40:12 (2000), 1784–1800
Citation in format AMSBIB
\Bibitem{Ost00}
\by V.~V.~Ostapenko
\paper Construction of high-order accurate shock-capturing finite difference schemes for unsteady shock waves
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2000
\vol 40
\issue 12
\pages 1857--1874
\mathnet{http://mi.mathnet.ru/zvmmf1410}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1830361}
\zmath{https://zbmath.org/?q=an:1001.76069}
\elib{https://elibrary.ru/item.asp?id=13341258}
\transl
\jour Comput. Math. Math. Phys.
\yr 2000
\vol 40
\issue 12
\pages 1784--1800
Linking options:
http://mi.mathnet.ru/eng/zvmmf1410 http://mi.mathnet.ru/eng/zvmmf/v40/i12/p1857
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
A. F. Voevodin, V. V. Ostapenko, “O raschete preryvnykh voln v otkrytykh ruslakh”, Sib. zhurn. vychisl. matem., 3:4 (2000), 305–321
-
V. V. Ostapenko, “Symmetric compact schemes with artificial viscosities of increased order of divergence”, Comput. Math. Math. Phys., 42:7 (2002), 980–999
-
N. M. Borisova, V. V. Ostapenko, “On accuracy of the shock wave computations by the shock-fitting method”, Comput. Math. Math. Phys., 43:10 (2003), 1437–1458
-
O. A. Kovyrkina, V. V. Ostapenko, “Construction of asymptotics of a discrete solution based on nonclassical differential approximations”, Comput. Math. Math. Phys., 45:1 (2005), 83–103
-
N. M. Borisova, V. V. Ostapenko, “Numerical simulation of discontinuous waves propagating over a dry bed”, Comput. Math. Math. Phys., 46:7 (2006), 1254–1276
-
A. S. Ovcharova, “Leveling a capillary ridge generated by substrate geometry”, Comput. Math. Math. Phys., 46:2 (2006), 305–314
-
V. V. Ostapenko, “O monotonnosti balansno-kharakteristicheskoi skhemy”, Matem. modelirovanie, 21:7 (2009), 29–42
-
Ostapenko V., “On Convergence of High Order Shock Capturing Difference Schemes”, Application of Mathematics in Technical and Natural Sciences, AIP Conference Proceedings, 1301, 2010, 413–425
-
Louaked M., Tounsi H., “Well-balanced Component-wise Scheme for Shallow Water System”, Application of Mathematics in Technical and Natural Sciences, AIP Conference Proceedings, 1301, 2010, 404–412
-
Ostapenko V.V., “On the construction of compact difference schemes”, Doklady Mathematics, 84:3 (2011), 841–845
-
V. V. Ostapenko, “On compact approximations of divergent differential equations”, Num. Anal. Appl., 5:3 (2012), 242–253
-
Rogov B.V., “High-Order Accurate Running Compact Scheme for Multidimensional Hyperbolic Equations”, Dokl. Math., 86:1 (2012), 582–586
-
B. V. Rogov, “High-order accurate monotone compact running scheme for multidimensional hyperbolic equations”, Comput. Math. Math. Phys., 53:2 (2013), 205–214
-
Ovcharova A.S., “Rupture of Liquid Film, Placed Over Deep Fluid, Under Action of Thermal Load”, Int. J. Heat Mass Transf., 78 (2014), 294–301
-
N. A. Mikhailov, “On convergence rate of WENO schemes behind a shock front”, Math. Models Comput. Simul., 7:5 (2015), 467–474
-
V. V. Ostapenko, A. V. Speshilova, A. A. Cherevko, A. P. Chupakhin, “Numerical simulation of wave motions on a rotating attracting spherical zone”, Comput. Math. Math. Phys., 55:3 (2015), 470–486
-
N. A. Zyuzina, V. V. Ostapenko, “Modification of the Cabaret scheme ensuring its high accuracy on local extrema”, Math. Models Comput. Simul., 8:3 (2016), 231–237
-
Ostapenko V. Kovyrkina O., “On Construction of Combined Shock-Capturing Finite-Difference Schemes of High Accuracy”, Numerical Analysis and Its Applications (NAA 2016), Lecture Notes in Computer Science, 10187, ed. Dimov I. Farago I. Vulkov L., Springer International Publishing Ag, 2017, 525–532
-
Kovyrkina O.A. Ostapenko V.V., “On the Construction of Combined Finite-Difference Schemes of High Accuracy”, Dokl. Math., 97:1 (2018), 77–81
-
M. E. Ladonkina, O. A. Neklyudova, V. V. Ostapenko, V. F. Tishkin, “Issledovanie tochnosti razryvnogo metoda Galerkina pri raschete reshenii s udarnymi volnami”, Preprinty IPM im. M. V. Keldysha, 2018, 195, 20 pp.
-
Kovyrkina O. Ostapenko V., “High Order Combined Finite-Difference Schemes”, International Conference of Numerical Analysis and Applied Mathematics (Icnaam 2017), AIP Conference Proceedings, 1978, Amer Inst Physics, 2018, UNSP 470027-1
-
M. E. Ladonkina, O. A. Neklyudova, V. V. Ostapenko, V. F. Tishkin, “On the accuracy of the discontinuous Galerkin method in calculation of shock waves”, Comput. Math. Math. Phys., 58:8 (2018), 1344–1353
-
O. A. Kovyrkina, V. V. Ostapenko, “Monotonicity of the CABARET scheme approximating a hyperbolic system of conservation laws”, Comput. Math. Math. Phys., 58:9 (2018), 1435–1450
-
Ostapenko V.V. Khandeeva N.A., “The Accuracy of Finite-Difference Schemes Calculating the Interaction of Shock Waves”, Dokl. Phys., 64:4 (2019), 197–201
-
O. A. Kovyrkina, V. V. Ostapenko, “O tochnosti skhemy tipa MUSCL pri raschete razryvnykh reshenii”, Matem. modelirovanie, 33:1 (2021), 105–121
|
Number of views: |
This page: | 387 | Full text: | 190 | References: | 22 | First page: | 1 |
|