RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2008, Volume 48, Number 5, Pages 882–898 (Mi zvmmf143)  

This article is cited in 2 scientific papers (total in 2 papers)

Dynamics of a rotating layer of an ideal electrically conducting incompressible fluid

S. E. Kholodova

St. Petersburg State University, Bibliotechnaya pl. 4, St. Petersburg, 198504, Russia

Abstract: A system of nonlinear partial differential equations is considered that models perturbations in a layer of an ideal electrically conducting rotating fluid bounded by spatially and temporally varying surfaces with allowance for inertial forces. The system is reduced to a scalar equation. The solvability of initial boundary value problems arising in the theory of waves in conducting rotating fluids can be established by analyzing this equation. Solutions to the scalar equation are constructed that describe small-amplitude wave propagation in an infinite horizontal layer and a long narrow channel.

Key words: ideal fluid dynamic problems, magnetohydrodynamic equations, reduction of vector equations to scalar equations, analytical method.

Full text: PDF file (1479 kB)
References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 2008, 48:5, 834–849

Bibliographic databases:

UDC: 519.634
Received: 31.07.2007
Revised: 19.09.2007

Citation: S. E. Kholodova, “Dynamics of a rotating layer of an ideal electrically conducting incompressible fluid”, Zh. Vychisl. Mat. Mat. Fiz., 48:5 (2008), 882–898; Comput. Math. Math. Phys., 48:5 (2008), 834–849

Citation in format AMSBIB
\Bibitem{Kho08}
\by S.~E.~Kholodova
\paper Dynamics of a~rotating layer of an ideal electrically conducting incompressible fluid
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2008
\vol 48
\issue 5
\pages 882--898
\mathnet{http://mi.mathnet.ru/zvmmf143}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2433646}
\zmath{https://zbmath.org/?q=an:1164.76428}
\transl
\jour Comput. Math. Math. Phys.
\yr 2008
\vol 48
\issue 5
\pages 834--849
\crossref{https://doi.org/10.1134/S0965542508050114}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000262334100011}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-44149112786}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf143
  • http://mi.mathnet.ru/eng/zvmmf/v48/i5/p882

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. I. Peregudin, S. E. Kholodova, “Dynamics of a rotating layer of an ideal electrically conducting incompressible inhomogeneous fluid in an equatorial region”, Comput. Math. Math. Phys., 50:11 (2010), 1871–1885  mathnet  crossref  adsnasa  isi
    2. Peregudin S.I., Kholodova S.E., “Specific features of propagation of unsteady waves in a rotating spherical layer of an ideal incompressible stratified electroconducting fluid in the equatorial latitude belt”, J. Appl. Mech. Tech. Phys., 52:2 (2011), 193–199  crossref  mathscinet  zmath  adsnasa  isi  elib  elib  scopus
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:172
    Full text:78
    References:14
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020