RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Ж. вычисл. матем. и матем. физ.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Ж. вычисл. матем. и матем. физ., 2000, том 40, номер 9, страницы 1339–1363 (Mi zvmmf1446)  

Эта публикация цитируется в 12 научных статьях (всего в 12 статьях)

Об ускорении конечно-элементных реализаций интерационных процессов с расщеплением граничных условий для системы типа Стокса

А. С. Лозинский

117967 Москва, ГСП-1, ул. Вавилова, 40, ВЦ РАН

Аннотация: Изучаются конечно-элементные реализации на основе полилинейных элементов итерационных процессов с полным и неполным расщеплением граничных условий для решения задачи типа Стокса в слое с условием периодичности. Получены явные выражениями изучаются свойства собственных значений и собственных функций возникающих операторов. Предложены и обоснованы итерационные процессы, которые по скорости сходимости в ряде случаев превосходят процессы, исследовавшиеся ранее.

Полный текст: PDF файл (2967 kB)
Список литературы: PDF файл   HTML файл

Англоязычная версия:
Computational Mathematics and Mathematical Physics, 2000, 40:9, 1284–1307

Реферативные базы данных:
Тип публикации: Статья
УДК: 519.634
MSC: Primary 35Q30; Secondary 76M10, 76D07, 65N30
Поступила в редакцию: 27.07.1999

Образец цитирования: А. С. Лозинский, “Об ускорении конечно-элементных реализаций интерационных процессов с расщеплением граничных условий для системы типа Стокса”, Ж. вычисл. матем. и матем. физ., 40:9 (2000), 1339–1363; Comput. Math. Math. Phys., 40:9 (2000), 1284–1307

Цитирование в формате AMSBIB
\RBibitem{Loz00}
\by А.~С.~Лозинский
\paper Об ускорении конечно-элементных реализаций интерационных процессов с расщеплением граничных условий для системы типа Стокса
\jour Ж. вычисл. матем. и матем. физ.
\yr 2000
\vol 40
\issue 9
\pages 1339--1363
\mathnet{http://mi.mathnet.ru/zvmmf1446}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1832272}
\zmath{https://zbmath.org/?q=an:0997.35041}
\elib{http://elibrary.ru/item.asp?id=13336061}
\transl
\jour Comput. Math. Math. Phys.
\yr 2000
\vol 40
\issue 9
\pages 1284--1307


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/zvmmf1446
  • http://mi.mathnet.ru/rus/zvmmf/v40/i9/p1339

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    Эта публикация цитируется в следующих статьяx:
    1. Б. В. Пальцев, И. И. Чечель, “О точных оценках скорости сходимости итерационных методов с расщеплением граничных условий для системы типа Стокса в слое с условием периодичности”, Ж. вычисл. матем. и матем. физ., 40:12 (2000), 1823–1837  mathnet  mathscinet  zmath; B. V. Pal'tsev, I. I. Chechel', “Exact estimates of the convergence rate of iterative methods with splitting of the boundary conditions for the Stokes-type system in a layer with a periodicity condition”, Comput. Math. Math. Phys., 40:12 (2000), 1751–1764  elib
    2. А. С. Лозинский, “Конечно-элементная реализация итерационных процессов с расщеплением граничных условий для системы типа Стокса в неконцентрических кольцах”, Ж. вычисл. матем. и матем. физ., 41:8 (2001), 1203–1216  mathnet  mathscinet; A. S. Lozinskii, “Finite-element realization of iterative processes with splitting of boundary conditions for a Stokes-type system in nonconcentric annuli”, Comput. Math. Math. Phys., 41:8 (2001), 1145–1157
    3. Belash V.O., Pal'tsev B.V., Chechel I.I., “On convergence rate of some iterative methods for bilinear and bicubic finite element schemes for the dissipative Helmholtz equation with large values of a singular parameter”, Russian J Numer Anal Math Modelling, 17:6 (2002), 485–520  crossref  mathscinet  zmath  isi  scopus
    4. В. О. Белаш, Б. В. Пальцев, “О бикубических конечно-элементных реализациях методов с расщеплением граничных условий периодичности”, Ж. вычисл. матем. и матем. физ., 42:2 (2002), 197–221  mathnet  mathscinet  zmath; V. O. Belash, B. V. Pal'tsev, “Bicubic finite-element implementations of methods with splitting of boundary conditions for a Stokes-type system in a strip under the periodicity condition”, Comput. Math. Math. Phys., 42:2 (2002), 188–210  elib
    5. Б. В. Пальцев, И. И. Чечель, “Повышение скорости сходимости билинейных конечно-элементных реализаций итерационных методов с расщеплением граничных условий для системы типа Стокса при больших значениях сингулярного параметра”, Ж. вычисл. матем. и матем. физ., 44:11 (2004), 2049–2068  mathnet  mathscinet  zmath; B. V. Pal'tsev, I. I. Chechel', “Increasing the rate of convergence of bilinear finite-element realizations of iterative methods by splitting boundary conditions for Stokes-type systems for large values of a singular parameter”, Comput. Math. Math. Phys., 44:11 (2004), 1949–1967
    6. Б. В. Пальцев, И. И. Чечель, “Конечно-элементные реализации итерационных методов с расщеплением граничных условий для систем Стокса и типа Стокса в шаровом слое, обеспечивающие 2-й порядок точности вплоть до оси симметрии”, Ж. вычисл. матем. и матем. физ., 45:5 (2005), 846–889  mathnet  mathscinet  zmath; B. V. Pal'tsev, I. I. Chechel', “Second-order accurate (up to the axis of symmetry) finite-element implementations of iterative methods with splitting of boundary conditions for Stokes and stokes-type systems in a spherical layer”, Comput. Math. Math. Phys., 45:5 (2005), 816–857  elib
    7. Б. В. Пальцев, И. И. Чечель, “О скорости сходимости и оптимизации численного метода с расщеплением граничных условий для системы Стокса в шаровом слое в осесимметричном случае. Модификация для толстых слоев”, Ж. вычисл. матем. и матем. физ., 46:5 (2006), 858–886  mathnet  mathscinet  elib; B. V. Pal'tsev, I. I. Chechel', “On the convergence rate and optimization of a numerical method with splitting of boundary conditions for the stokes system in a spherical layer in the axisymmetric case: Modification for thick layers”, Comput. Math. Math. Phys., 46:5 (2006), 820–847  crossref  elib
    8. М. Б. Соловьев, “О численных реализациях нового итерационного метода с расщеплением граничных условий решения нестационарной задачи Стокса в полосе при условии периодичности”, Ж. вычисл. матем. и матем. физ., 50:10 (2010), 1771–1792  mathnet  adsnasa  elib; M. B. Soloviev, “On numerical implementations of a new iterative method with boundary condition splitting for solving the nonstationary stokes problem in a strip with periodicity condition”, Comput. Math. Math. Phys., 50:10 (2010), 1682–1701  crossref  isi
    9. М. Б. Соловьев, “Численные реализации итерационного метода с расщеплением граничных условий решения нестационарной задачи Стокса в зазоре между коаксиальными цилиндрами”, Ж. вычисл. матем. и матем. физ., 50:11 (2010), 1998–2016  mathnet  adsnasa  elib; M. B. Soloviev, “Numerical implementations of an iterative method with boundary condition splitting as applied to the nonstationary stokes problem in the gap between coaxial cylinders”, Comput. Math. Math. Phys., 50:11 (2010), 1895–1913  crossref  isi
    10. Solov'ev M.B., “On Numerical Implementations of a New Iterative Method with Boundary Condition Splitting for the Nonstationary Stokes Problem”, Doklady Mathematics, 81:3 (2010), 471–475  crossref  mathscinet  zmath  isi  scopus
    11. Б. В. Пальцев, М. Б. Соловьев, И. И. Чечель, “О развитии итерационных методов с расщеплением граничных условий решения краевых и начально-краевых задач для линеаризованных и нелинейной систем Навье–Стокса”, Ж. вычисл. матем. и матем. физ., 51:1 (2011), 74–95  mathnet  mathscinet  elib; B. V. Pal'tsev, M. B. Soloviev, I. I. Chechel', “On the development of iterative methods with boundary condition splitting for solving boundary and initial-boundary value problems for the linearized and nonlinear Navier–Stokes equations”, Comput. Math. Math. Phys., 51:1 (2011), 68–87  crossref  isi
    12. М. Б. Соловьев, “О численной реализации итерационного метода с расщеплением граничных условий решения нестационарной задачи Стокса на основе двухэтапной асимптотически устойчивой разностной схемы”, Ж. вычисл. матем. и матем. физ., 54:12 (2014), 1894–1903  mathnet  crossref  mathscinet  elib; M. B. Solov'ev, “Numerical implementation of an iterative method with boundary condition splitting for solving the nonstationary stokes problem on the basis of an asymptotically stable two-stage difference scheme”, Comput. Math. Math. Phys., 54:12 (2014), 1817–1825  crossref  isi  elib
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Просмотров:
    Эта страница:144
    Полный текст:60
    Литература:44
    Первая стр.:1
     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2020