RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2000, Volume 40, Number 5, Pages 714–725 (Mi zvmmf1496)  

This article is cited in 6 scientific papers (total in 6 papers)

Grid approximation of singularly perturbed boundary value problems on locally condensing grids: Convection-diffusion equations

G. I. Shishkin

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg

Full text: PDF file (1578 kB)
References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 2000, 40:5, 680–691

Bibliographic databases:
UDC: 519.6:517.928.4
MSC: Primary 65N06; Secondary 65N50, 65N12, 35B25, 35J25
Received: 23.12.1996
Revised: 18.11.1999

Citation: G. I. Shishkin, “Grid approximation of singularly perturbed boundary value problems on locally condensing grids: Convection-diffusion equations”, Zh. Vychisl. Mat. Mat. Fiz., 40:5 (2000), 714–725; Comput. Math. Math. Phys., 40:5 (2000), 680–691

Citation in format AMSBIB
\Bibitem{Shi00}
\by G.~I.~Shishkin
\paper Grid approximation of singularly perturbed boundary value problems on locally condensing grids: Convection-diffusion equations
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2000
\vol 40
\issue 5
\pages 714--725
\mathnet{http://mi.mathnet.ru/zvmmf1496}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1800546}
\zmath{https://zbmath.org/?q=an:0993.65115}
\transl
\jour Comput. Math. Math. Phys.
\yr 2000
\vol 40
\issue 5
\pages 680--691


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf1496
  • http://mi.mathnet.ru/eng/zvmmf/v40/i5/p714

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. G. I. Shishkin, “Grid approximation of a singularly perturbed parabolic reaction-diffusion equation with a fast-moving source”, Comput. Math. Math. Phys., 42:6 (2002), 788–801  mathnet  mathscinet  zmath
    2. G. I. Shishkin, “The use of solutions on embedded grids for the approximation of singularly perturbed parabolic convection-diffusion equations on adapted grids”, Comput. Math. Math. Phys., 46:9 (2006), 1539–1559  mathnet  crossref  mathscinet
    3. Shishkin G.I., “Using the technique of majorant functions in approximation of a singular perturbed parabolic convection-diffusion equation on adaptive grids”, Russian Journal of Numerical Analysis and Mathematical Modelling, 22:3 (2007), 263–289  crossref  mathscinet  zmath  isi  scopus
    4. I. A. Blatov, N. V. Dobrobog, “Conditional $\varepsilon$-uniform convergence of adaptation algorithms in the finite element method for singularly perturbed problems”, Comput. Math. Math. Phys., 50:9 (2010), 1476–1493  mathnet  crossref  mathscinet  adsnasa  isi
    5. I. A. Blatov, E. V. Kitaeva, “Convergence of the adapting grid method of Bakhvalov's type for singularly perturbed boundary value problems”, Num. Anal. Appl., 9:1 (2016), 34–44  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    6. I. A. Blatov, N. V. Dobrobog, E. V. Kitaeva, “Conditional $\varepsilon$-uniform boundedness of Galerkin projectors and convergence of an adaptive mesh method as applied to singularly perturbed boundary value problems”, Comput. Math. Math. Phys., 56:7 (2016), 1293–1304  mathnet  crossref  crossref  isi  elib
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:181
    Full text:64
    References:31
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020