Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 1999, Volume 39, Number 8, Pages 1393–1404 (Mi zvmmf1636)  

This article is cited in 42 scientific papers (total in 42 papers)

Numerical simulation of weak shock diffraction over a wedge under the von Neumann paradox conditions

E. I. Vasileva, A. N. Kraikob

a Volgograd State University
b Central Institute of Aviation Motors, State Scientific Center of Russian Federation, Moscow

Full text: PDF file (2025 kB)
References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 1999, 39:8, 1335–1345

Bibliographic databases:
UDC: 519.6:531.33
MSC: Primary 76M20; Secondary 76L05
Received: 20.01.1998
Revised: 28.04.1999

Citation: E. I. Vasilev, A. N. Kraiko, “Numerical simulation of weak shock diffraction over a wedge under the von Neumann paradox conditions”, Zh. Vychisl. Mat. Mat. Fiz., 39:8 (1999), 1393–1404; Comput. Math. Math. Phys., 39:8 (1999), 1335–1345

Citation in format AMSBIB
\Bibitem{VasKra99}
\by E.~I.~Vasilev, A.~N.~Kraiko
\paper Numerical simulation of weak shock diffraction over a wedge under the von Neumann paradox conditions
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 1999
\vol 39
\issue 8
\pages 1393--1404
\mathnet{http://mi.mathnet.ru/zvmmf1636}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1719182}
\zmath{https://zbmath.org/?q=an:1083.76563}
\transl
\jour Comput. Math. Math. Phys.
\yr 1999
\vol 39
\issue 8
\pages 1335--1345


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf1636
  • http://mi.mathnet.ru/eng/zvmmf/v39/i8/p1393

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. N. M. Borisova, V. V. Ostapenko, “On accuracy of the shock wave computations by the shock-fitting method”, Comput. Math. Math. Phys., 43:10 (2003), 1437–1458  mathnet  mathscinet  zmath  elib
    2. Ben-Dor G., Elperin T., Vasiliev E.I., “Flow-Mach-number-induced hysteresis phenomena in the interaction of conical shock waves - a numerical investigation”, J Fluid Mech, 496 (2003), 335–354  crossref  mathscinet  zmath  adsnasa  isi  scopus
    3. Gun'ko Yu.P., Kudryavtsev A.N., Rakhimov R.D., “Supersonic Inviscid Corner Flows with Regular and Irregular Shock Interaction”, Fluid Dynamics, 39:2 (2004), 304–318  crossref  mathscinet  zmath  adsnasa  isi  scopus
    4. Bibik Yu.V., Duesperov V.N., Popov S.P., “Structure of Time-Dependent Transonic Flows in Plane Channels”, Fluid Dynamics, 40:2 (2005), 315–325  crossref  mathscinet  zmath  adsnasa  isi  scopus
    5. Skews B.W., Ashworth J.T., “The physical nature of weak shock wave reflection”, J Fluid Mech, 542 (2005), 105–114  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    6. Berezkina M.K., Krasovskaya I.V., Ofengeim D.Kh., “Diffraction of a two-shock configuration by a convex cylindrical surface”, Technical Physics, 51:7 (2006), 827–833  crossref  adsnasa  isi  elib  scopus
    7. Tesdall A.M., Sanders R., Keyfitz B.L., “Self-similar solutions for the triple point paradox in gasdynamics”, SIAM J Appl Math, 68:5 (2007), 1360–1377  crossref  mathscinet  zmath  isi  scopus
    8. Kraiko A.N., P'yankov K.S., “Shocks in Local Supersonic Zones”, Fluid Dynamics, 42:5 (2007), 844–850  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    9. Berezkina M.K., Krasovskaya I.V., Ofengeim D.Kh., “Diffraction of a two-shock configuration by a concave cylindrical surface”, Technical Physics, 52:10 (2007), 1271–1280  crossref  adsnasa  isi  elib  scopus
    10. Baskar S., Coulouvrat F., Marchiano R., “Nonlinear reflection of grazing acoustic shock waves: unsteady transition from von Neumann to Mach to Snell-Descartes reflections”, J Fluid Mech, 575 (2007), 27–55  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    11. Defina A., Viero D.P., Susin F.M., “Numerical simulation of the Vasilev reflection”, Shock Waves, 18:3 (2008), 235–242  crossref  zmath  adsnasa  isi  elib  scopus
    12. Vasilev E.I., Elperin T., Ben-Dor G., “Reconsideration of the so-called von Neumann paradox in the reflection of a shock wave over a wedge”, Explosion, Shock Wave and Hypervelocity Phenomena in Materials II, Materials Science Forum, 566, 2008, 1–8  crossref  isi  elib
    13. Elling V., “Instability of Strong Regular Reflection and Counterexamples to the Detachment Criterion”, SIAM J Appl Math, 70:4 (2009), 1330–1340  crossref  mathscinet  zmath  isi
    14. Elling V., “Counterexamples to the Sonic Criterion”, Arch Ration Mech Anal, 194:3 (2009), 987–1010  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    15. Skews B.W., Li G., Paton R., “Experiments on Guderley Mach reflection”, Shock Waves, 19:2 (2009), 95–102  crossref  adsnasa  isi  elib  scopus
    16. Skews B.W., “A fresh look at unsteady shock wave reflection using high-speed imaging”, 28th International Congress on High-Speed Imaging and Photonics, Proceedings of SPIE-the International Society for Optical Engineering, 7126, 2009  isi
    17. Elling V., “Counterexamples to the sonic and detachment criteria”, Hyperbolic Problems: Theory, Numerics and Applications, Part 2, Proceedings of Symposia in Applied Mathematics, 67, no. 2, 2009, 557–564  crossref  mathscinet  zmath  isi
    18. Chen G.-Q., Feldman M., “Shock reflection-diffraction phenomena and multidimensional conservation laws”, Hyperbolic Problems: Theory, Numerics and Applications, Part 1, Proceedings of Symposia in Applied Mathematics, 67, no. 1, 2009, 25–51  crossref  mathscinet  zmath  isi
    19. Vasilev E.I., Elperin T., Ben-Dor G., “Analytical reconsideration of the so-called von Neumann paradox in the reflection of a shock wave over a wedge”, Shock Waves, 2009, 1353–1358  crossref  isi
    20. Khotyanovsky D., Kudryavtsev A., Bondar Y., Shoev G., Ivanov M., “Viscosity effects on weak shock wave reflection”, Shock Waves, 2009, 1555–1560  crossref  zmath  isi
    21. Ivanov M., Khotyanovsky D., Shoev G., Bondar Y., Kudryavtsev A., “Viscosity Effects on Weak Irregular Reflection of Shock Waves in Steady Flow”, Rarefied Gas Dynamics, AIP Conference Proceedings, 1084, 2009, 329–334  adsnasa  isi
    22. Ivanov M.S., Bondar Y.A., Khotyanovsky D.V., Kudryavtsev A.N., Shoev G.V., “Viscosity effects on weak irregular reflection of shock waves in steady flow”, Progress in Aerospace Sciences, 46:2–3 (2010), 89–105  crossref  adsnasa  isi  scopus
    23. Lai G., Sheng W., “Nonexistence of the Von Neumann Reflection Configuration for the Triple Point Paradox”, SIAM J Appl Math, 71:6 (2011), 2072–2092  crossref  mathscinet  zmath  isi  elib  scopus
    24. Shoev G.V., Khotyanovsky D.V., Bondar Y.A., Kudryavtsev A.N., Ivanov M.S., “Numerical Study of Triple-Shock-Wave Structure in Steady Irregular Reflection”, 27th International Symposium on Rarefied Gas Dynamics, 2010, AIP Conference Proceedings, 1333, 2011, 325–330  crossref  adsnasa  isi  scopus
    25. Cachucho A., Skews B.W., “Guderley reflection for higher Mach numbers in a standard shock tube”, Shock Waves, 22:2 (2012), 141–149  crossref  adsnasa  isi  elib  scopus
    26. Semenov A.N., Berezkina M.K., Krassovskaya I.V., “Classification of Pseudo-Steady Shock Wave Reflection Types”, Shock Waves, 22:4 (2012), 307–316  crossref  mathscinet  adsnasa  isi  elib  scopus
    27. Isakova N.P., Kraiko A.N., P'yankov K.S., Tillyayeva N.I., “The Amplification of Weak Shock Waves in Axisymmetric Supersonic Flow and their Reflection From an Axis of Symmetry”, J. Appl. Math. Mech., 76:4 (2012), 451–465  crossref  mathscinet  isi  isi  elib  scopus
    28. Elling V., Roberts J., “Steady and Self-Similar Inviscid Flow”, SIAM J. Math. Anal., 44:4 (2012), 2344–2371  crossref  mathscinet  zmath  isi  elib  scopus
    29. Viero D.P., Susin F.M., Defina A., “A Note on Weak Shock Wave Reflection”, Shock Waves, 23:5 (2013), 505–511  crossref  adsnasa  isi  elib  scopus
    30. Leete K.M., Gee K.L., Neilsen T.B., Truscott T.T., “Mach Stem Formation in Outdoor Measurements of Acoustic Shocks”, J. Acoust. Soc. Am., 138:6 (2015), EL522–EL527  crossref  isi  elib  scopus
    31. Tesdall A.M., Sanders R., Popivanov N., “Further Results on Guderley Mach Reflection and the Triple Point Paradox”, J. Sci. Comput., 64:3, SI (2015), 721–744  crossref  mathscinet  zmath  isi  elib  scopus
    32. Lai G., Sheng W., “Centered Wave Bubbles With Sonic Boundary of Pseudosteady Guderley Mach Reflection Configurations in Gas Dynamics”, J. Math. Pures Appl., 104:1 (2015), 179–206  crossref  mathscinet  zmath  isi  elib  scopus
    33. Karzova M.M., Khokhlova V.A., Salze E., Ollivier S., Blanc-Benon Ph., “Mach Stem Formation in Reflection and Focusing of Weak Shock Acoustic Pulses”, J. Acoust. Soc. Am., 137:6 (2015), EL436–EL442  crossref  isi  elib  scopus
    34. Karzova M., Yuldashev P., Ollivier S., Khokhlova V., Blanc-Benon Ph., “Nonlinear Reflection of a Spherically Divergent N-Wave From a Plane Surface: Optical Interferometry Measurements in Air”, Recent Developments in Nonlinear Acoustics, AIP Conference Proceedings, 1685, eds. BlancBenon P., Sparrow V., Dragna D., Amer Inst Physics, 2015, UNSP 090011  crossref  isi  scopus
    35. Lai G., Shang W., “Two-Dimensional Centered Wave Flow Patches To the Guderley Mach Reflection Configurations For Steady Flows in Gas Dynamics”, J. Hyberbolic Differ. Equ., 13:1 (2016), 107–128  crossref  mathscinet  zmath  isi  scopus
    36. Vasil'ev E.I., “The nature of the triple point singularity in the case of stationary reflection of weak shock waves”, Fluid Dyn., 51:6 (2016), 804–813  crossref  mathscinet  zmath  isi  scopus
    37. Shoev G.V., Ivanov M.S., “Numerical study of shock wave interaction in steady flows of a viscous heat-conducting gas with a low ratio of specific heats”, Thermophys. Aeromechanics, 23:3 (2016), 343–354  crossref  isi  elib  scopus
    38. Chen G., Feldman M., “Mathematics of Shock Reflection-Diffraction and Von Neumann'S Conjectures”, Mathematics of Shock Reflection-Diffraction and Von Neumann'S Conjectures, Annals of Mathematics Studies, 197, Princeton Univ Press, 2018, 1–814  mathscinet  isi
    39. Kluwick A., Cox E.A., “Weak Shock Reflection in Channel Flows For Dense Gases”, J. Fluid Mech., 874 (2019), 131–157  crossref  isi
    40. Chernyshov V M., Gvozdeva L.G., “Differential Characteristics of the Overexpanded Gas Jet Flow Field in the Vicinity of the Nozzle Edge”, Tech. Phys., 64:4 (2019), 441–448  crossref  isi
    41. Giuliani A., Krivodonova L., “Adaptive Mesh Refinement on Graphics Processing Units For Applications in Gas Dynamics”, J. Comput. Phys., 381 (2019), 67–90  crossref  isi
    42. Shoev G., Ogawa H., “Numerical Study of Viscous Effects on Centreline Shock Reflection in Axisymmetric Flow”, Phys. Fluids, 31:2 (2019), 026105  crossref  isi
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:491
    Full text:188
    References:67
    First page:1

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021