RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 1999, Volume 39, Number 1, Pages 87–97 (Mi zvmmf1755)  

This article is cited in 7 scientific papers (total in 7 papers)

A numerical scheme for thermal convection problems

V. A. Goncharov, E. V. Markov

State Research Institute of Physical Problems

Full text: PDF file (2127 kB)
References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 1999, 39:1, 81–91

Bibliographic databases:
UDC: 519.634
MSC: Primary 76M20; Secondary 76R05, 80A20, 80A22
Received: 13.01.1998

Citation: V. A. Goncharov, E. V. Markov, “A numerical scheme for thermal convection problems”, Zh. Vychisl. Mat. Mat. Fiz., 39:1 (1999), 87–97; Comput. Math. Math. Phys., 39:1 (1999), 81–91

Citation in format AMSBIB
\Bibitem{GonMar99}
\by V.~A.~Goncharov, E.~V.~Markov
\paper A numerical scheme for thermal convection problems
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 1999
\vol 39
\issue 1
\pages 87--97
\mathnet{http://mi.mathnet.ru/zvmmf1755}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1680466}
\zmath{https://zbmath.org/?q=an:1062.76537}
\transl
\jour Comput. Math. Math. Phys.
\yr 1999
\vol 39
\issue 1
\pages 81--91


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf1755
  • http://mi.mathnet.ru/eng/zvmmf/v39/i1/p87

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. A. Goncharov, “A method for solving the Stefan problem in a two-phase domain with a nonplanar interface”, Comput. Math. Math. Phys., 40:11 (2000), 1638–1646  mathnet  mathscinet  zmath
    2. Goncharov V.A., “Numerical simulation of semiconductor crystal growth by directional melt solidification”, Theoretical Foundations of Chemical Engineering, 35:3 (2001), 242–248  crossref  isi  scopus
    3. N. A. Baldina, B. V. Vasekin, V. A. Goncharov, “Simulation of abnormal radial impurity inhomogeneity formation in space experiments on crystal growth”, Math. Models Comput. Simul., 2:3 (2010), 341–348  mathnet  crossref  zmath
    4. Baldina N.A., Vasekin B.V., Goncharov V.A., “Mathematical modeling of radial impurity distribution in crystals grown under laminar convection conditions”, Theoretical Foundations of Chemical Engineering, 43:4 (2009), 353–360  crossref  isi  scopus
    5. Goncharov V.A., Azanova I.V., Vasekin B.V., “Model of nonequilibrium crystallization for the numerical solution to the problem of semiconductor crystal growth from melts”, Semiconductors, 45:13 (2011), 1632–1637  crossref  adsnasa  isi  elib  scopus
    6. Goncharov V.A., Dormidontov A.N., “Primenenie trekhsloinogo poperemenno-treugolnogo metoda dlya resheniya uravneniya puassona v matematicheskoi modeli vyraschivaniya kristallov poluprovodnikov”, Vestnik moskovskoi gosudarstvennoi akademii delovogo administrirovaniya. seriya: filosofskie, sotsialnye i estestvennye nauki, 2012, no. 3, 154–158  mathscinet  elib
    7. Goncharov V.A., Dormidontov A.N., “Numerical Simulation of the Effect of Non-Steady-State Conditions on the Formation of Concentration Growth Striations When Growing Crystals By the Bridgman Method”, Semiconductors, 48:13 (2014), 1716–1719  crossref  adsnasa  isi  elib  scopus
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:179
    Full text:82
    References:14
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020