RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 1998, Volume 38, Number 12, Pages 1989–2001 (Mi zvmmf1766)  

This article is cited in 8 scientific papers (total in 8 papers)

Finite-difference approximations for singularly perturbed elliptic equations

G. I. Shishkin

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg

Full text: PDF file (2073 kB)
References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 1998, 38:12, 1909–1921

Bibliographic databases:
UDC: 519.632.4
MSC: Primary 65N06; Secondary 65N12, 35B25, 35J25
Received: 14.10.1996
Revised: 01.12.1997

Citation: G. I. Shishkin, “Finite-difference approximations for singularly perturbed elliptic equations”, Zh. Vychisl. Mat. Mat. Fiz., 38:12 (1998), 1989–2001; Comput. Math. Math. Phys., 38:12 (1998), 1909–1921

Citation in format AMSBIB
\Bibitem{Shi98}
\by G.~I.~Shishkin
\paper Finite-difference approximations for singularly perturbed elliptic equations
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 1998
\vol 38
\issue 12
\pages 1989--2001
\mathnet{http://mi.mathnet.ru/zvmmf1766}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1658997}
\zmath{https://zbmath.org/?q=an:0971.65094}
\transl
\jour Comput. Math. Math. Phys.
\yr 1998
\vol 38
\issue 12
\pages 1909--1921


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf1766
  • http://mi.mathnet.ru/eng/zvmmf/v38/i12/p1989

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Kopteva N., “Error expansion for an upwind scheme applied to a two-dimensional convection-diffusion problem”, SIAM J Numer Anal, 41:5 (2003), 1851–1869  crossref  mathscinet  zmath  isi  scopus
    2. Kadalbajoo M.K., Patidar K.C., “Singularly perturbed problems in partial differential equations: a survey”, Applied Mathematics and Computation, 134:2–3 (2003), 371–429  crossref  mathscinet  zmath  isi  scopus
    3. P. W. Hemker, G. I. Shishkin, L. P. Shishkina, “High-order accurate decomposition of the Richardson method for a singularly perturbed elliptic reaction-diffusion equation”, Comput. Math. Math. Phys., 44:2 (2004), 309–316  mathnet  mathscinet  zmath
    4. G. I. Shishkin, “Richardson's method for increasing the accuracy of difference solutions of singularly perturbed elliptic convection-diffusion equations”, Russian Math. (Iz. VUZ), 50:2 (2006), 57–71  mathnet  mathscinet  zmath
    5. G. I. Shishkin, “Metod povyshennoi tochnosti dlya kvazilineinogo singulyarno vozmuschennogo ellipticheskogo uravneniya konvektsii-diffuzii”, Sib. zhurn. vychisl. matem., 9:1 (2006), 81–108  mathnet  zmath
    6. G. I. Shishkin, “A method of asymptotic constructions of improved accuracy for a quasilinear singularly perturbed parabolic convection-diffusion equation”, Comput. Math. Math. Phys., 46:2 (2006), 231–250  mathnet  crossref  mathscinet  zmath
    7. G. I. Shishkin, L. P. Shishkina, “A Richardson scheme of an increased order of accuracy for a semilinear singularly perturbed elliptic convection-diffusion equation”, Comput. Math. Math. Phys., 50:3 (2010), 437–456  mathnet  crossref  mathscinet  adsnasa  isi
    8. Shishkin G.I., Shishkina L.P., “Iterative Newton solution method for the Richardson scheme for a semilinear singular perturbed elliptic convection-diffusion equation”, Russian J Numer Anal Math Modelling, 26:4 (2011), 427–445  crossref  mathscinet  zmath  isi  elib  scopus
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:237
    Full text:91
    References:31
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020