Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 1998, Volume 38, Number 10, Pages 1651–1653 (Mi zvmmf1795)  

This article is cited in 7 scientific papers (total in 7 papers)

A method of error analysis for Runge–Kutta methods

G. Yu. Kulikov

Ulyanovsk State University, Faculty of Mathematics and Mechanics

Full text: PDF file (456 kB)
References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 1998, 38:10, 1580–1582

Bibliographic databases:
UDC: 519.622
MSC: Primary 65L70; Secondary 65L05, 34A34, 65L06, 65L50
Received: 25.09.1997

Citation: G. Yu. Kulikov, “A method of error analysis for Runge–Kutta methods”, Zh. Vychisl. Mat. Mat. Fiz., 38:10 (1998), 1651–1653; Comput. Math. Math. Phys., 38:10 (1998), 1580–1582

Citation in format AMSBIB
\Bibitem{Kul98}
\by G.~Yu.~Kulikov
\paper A method of error analysis for Runge--Kutta methods
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 1998
\vol 38
\issue 10
\pages 1651--1653
\mathnet{http://mi.mathnet.ru/zvmmf1795}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1651865}
\zmath{https://zbmath.org/?q=an:0969.65078}
\transl
\jour Comput. Math. Math. Phys.
\yr 1998
\vol 38
\issue 10
\pages 1580--1582


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf1795
  • http://mi.mathnet.ru/eng/zvmmf/v38/i10/p1651

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. G. Yu. Kulikov, S. K. Shindin, “A technique for controlling the global error in multistep methods”, Comput. Math. Math. Phys., 40:9 (2000), 1255–1275  mathnet  mathscinet  zmath
    2. G. Yu. Kulikov, A. I. Merkulov, “On one-step collocation methods with higher derivatives for solving ordinary differential equations”, Comput. Math. Math. Phys., 44:10 (2004), 1696–1720  mathnet  mathscinet  zmath
    3. G. Yu. Kulikov, S. K. Shindin, “On multistep methods of the interpolation type with an automated checking of the global error”, Comput. Math. Math. Phys., 44:8 (2004), 1314–1333  mathnet  mathscinet  zmath
    4. G. Yu. Kulikov, S. K. Shindin, “On the efficient computation of asymptotically sharp estimates for local and global errors in multistep methods with constant coefficients”, Comput. Math. Math. Phys., 44:5 (2004), 794–814  mathnet  mathscinet
    5. Kulikov G.Y., “One-step methods and implicit extrapolation technique for index 1 differential-algebraic systems”, Russian J Numer Anal Math Modelling, 19:6 (2004), 527–553  crossref  mathscinet  zmath  isi
    6. G. Yu. Kulikov, E. Y. Khrustaleva, “Automatic step size and order control in implicit one-step extrapolation methods”, Comput. Math. Math. Phys., 48:9 (2008), 1545–1569  mathnet  crossref  mathscinet  isi
    7. G. Yu. Kulikov, E. Yu. Khrustalëva, “On the automatic control of step size and order in one-step collocation methods with higher derivatives”, Comput. Math. Math. Phys., 50:6 (2010), 1006–1023  mathnet  crossref  mathscinet  adsnasa  isi
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:357
    Full text:174
    References:32
    First page:1

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022