Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 1998, Volume 38, Number 9, Pages 1553–1562 (Mi zvmmf1825)  

This article is cited in 6 scientific papers (total in 6 papers)

Modified line-by-line method for difference elliptic equations

V. G. Zverev

Tomsk State University

Full text: PDF file (1564 kB)
References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 1998, 38:9, 1490–1498

Bibliographic databases:
UDC: 519.632.4
MSC: Primary 65N06; Secondary 65F10, 35J25, 65N12
Received: 21.05.1997

Citation: V. G. Zverev, “Modified line-by-line method for difference elliptic equations”, Zh. Vychisl. Mat. Mat. Fiz., 38:9 (1998), 1553–1562; Comput. Math. Math. Phys., 38:9 (1998), 1490–1498

Citation in format AMSBIB
\Bibitem{Zve98}
\by V.~G.~Zverev
\paper Modified line-by-line method for difference elliptic equations
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 1998
\vol 38
\issue 9
\pages 1553--1562
\mathnet{http://mi.mathnet.ru/zvmmf1825}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1669098}
\zmath{https://zbmath.org/?q=an:0968.65074}
\transl
\jour Comput. Math. Math. Phys.
\yr 1998
\vol 38
\issue 9
\pages 1490--1498


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf1825
  • http://mi.mathnet.ru/eng/zvmmf/v38/i9/p1553

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. G. Zverev, “Implicit block iterative method for solving two-dimensional elliptic equations”, Comput. Math. Math. Phys., 40:4 (2000), 562–569  mathnet  mathscinet  zmath
    2. Zverev V.G., “About the iteration method for solving difference equations”, Numerical Analysis and its Applications, Lecture Notes in Computer Science, 3401, 2005, 621–628  crossref  zmath  isi
    3. A. A. Fomin, L. N. Fomina, “Sravnenie effektivnosti vysokoskorostnykh metodov resheniya raznostnykh ellipticheskikh SLAU”, Vestn. Tomsk. gos. un-ta. Matem. i mekh., 2009, no. 2(6), 71–77  mathnet
    4. A. A. Fomin, L. N. Fomina, “Ob odnom variante polineinogo rekurrentnogo metoda resheniya raznostnykh ellipticheskikh uravnenii”, Vestn. Tomsk. gos. un-ta. Matem. i mekh., 2010, no. 2(10), 20–27  mathnet
    5. A. A. Fomin, L. N. Fomina, “O skhodimosti neyavnogo iteratsionnogo polineinogo rekurrentnogo metoda resheniya sistem raznostnykh ellipticheskikh uravnenii”, Kompyuternye issledovaniya i modelirovanie, 9:6 (2017), 857–880  mathnet  crossref
    6. A. A. Fomin, L. N. Fomina, “The use of the line-by-line recurrent method for solving systems of difference elliptic equations with nine-diagonal matrices”, Vestn. YuUrGU. Ser. Vych. matem. inform., 8:2 (2019), 5–21  mathnet  crossref  elib
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:238
    Full text:106
    References:33
    First page:1

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021