|
This article is cited in 14 scientific papers (total in 14 papers)
Finite-difference approximation of the Hugoniot conditions on a shock front propagating with variable velocity
V. V. Ostapenko Institute of Hydrodynamics, Novosibirsk
Full text:
PDF file (1640 kB)
References:
PDF file
HTML file
English version:
Computational Mathematics and Mathematical Physics, 1998, 38:8, 1299–1311
Bibliographic databases:
UDC:
519.6:531.33
MSC: Primary 76M20; Secondary 76L05 Received: 15.05.1996 Revised: 16.01.1998
Citation:
V. V. Ostapenko, “Finite-difference approximation of the Hugoniot conditions on a shock front propagating with variable velocity”, Zh. Vychisl. Mat. Mat. Fiz., 38:8 (1998), 1355–1367; Comput. Math. Math. Phys., 38:8 (1998), 1299–1311
Citation in format AMSBIB
\Bibitem{Ost98}
\by V.~V.~Ostapenko
\paper Finite-difference approximation of the Hugoniot conditions on a shock front propagating with variable velocity
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 1998
\vol 38
\issue 8
\pages 1355--1367
\mathnet{http://mi.mathnet.ru/zvmmf1843}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1673585}
\zmath{https://zbmath.org/?q=an:1086.76552}
\transl
\jour Comput. Math. Math. Phys.
\yr 1998
\vol 38
\issue 8
\pages 1299--1311
Linking options:
http://mi.mathnet.ru/eng/zvmmf1843 http://mi.mathnet.ru/eng/zvmmf/v38/i8/p1355
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
V. V. Ostapenko, “Construction of high-order accurate shock-capturing finite difference schemes for unsteady shock waves”, Comput. Math. Math. Phys., 40:12 (2000), 1784–1800
-
Kovyrkina O.A., Ostapenko V.V., “On the Convergence of Shock-Capturing Difference Schemes”, Doklady Mathematics, 82:1 (2010), 599–603
-
Ostapenko V., “On Convergence of High Order Shock Capturing Difference Schemes”, Application of Mathematics in Technical and Natural Sciences, AIP Conference Proceedings, 1301, 2010, 413–425
-
Ostapenko V.V., “On the construction of compact difference schemes”, Doklady Mathematics, 84:3 (2011), 841–845
-
V. V. Ostapenko, “On compact approximations of divergent differential equations”, Num. Anal. Appl., 5:3 (2012), 242–253
-
O. A. Kovyrkina, V. V. Ostapenko, “On the practical accuracy of shock-capturing schemes”, Math. Models Comput. Simul., 6:2 (2014), 183–191
-
N. A. Mikhailov, “On convergence rate of WENO schemes behind a shock front”, Math. Models Comput. Simul., 7:5 (2015), 467–474
-
Ostapenko V., Kovyrkina O., “On Construction of Combined Shock-Capturing Finite-Difference Schemes of High Accuracy”, Numerical Analysis and Its Applications (NAA 2016), Lecture Notes in Computer Science, 10187, eds. Dimov I., Farago I., Vulkov L., Springer International Publishing Ag, 2017, 525–532
-
Kovyrkina O.A., Ostapenko V.V., “On the Construction of Combined Finite-Difference Schemes of High Accuracy”, Dokl. Math., 97:1 (2018), 77–81
-
M. E. Ladonkina, O. A. Neklyudova, V. V. Ostapenko, V. F. Tishkin, “Issledovanie tochnosti razryvnogo metoda Galerkina pri raschete reshenii s udarnymi volnami”, Preprinty IPM im. M. V. Keldysha, 2018, 195, 20 pp.
-
Kovyrkina O., Ostapenko V., “High Order Combined Finite-Difference Schemes”, International Conference of Numerical Analysis and Applied Mathematics (Icnaam 2017), AIP Conference Proceedings, 1978, Amer Inst Physics, 2018, UNSP 470027-1
-
M. E. Ladonkina, O. A. Neklyudova, V. V. Ostapenko, V. F. Tishkin, “On the accuracy of the discontinuous Galerkin method in calculation of shock waves”, Comput. Math. Math. Phys., 58:8 (2018), 1344–1353
-
Ostapenko V.V., Khandeeva N.A., “The Accuracy of Finite-Difference Schemes Calculating the Interaction of Shock Waves”, Dokl. Phys., 64:4 (2019), 197–201
-
O. A. Kovyrkina, V. V. Ostapenko, “O tochnosti skhemy tipa MUSCL pri raschete razryvnykh reshenii”, Matem. modelirovanie, 33:1 (2021), 105–121
|
Number of views: |
This page: | 158 | Full text: | 72 | References: | 15 | First page: | 1 |
|