Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
General information
Latest issue
Impact factor

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS

Zh. Vychisl. Mat. Mat. Fiz.:

Personal entry:
Save password
Forgotten password?

Zh. Vychisl. Mat. Mat. Fiz., 1998, Volume 38, Number 6, Pages 918–931 (Mi zvmmf1869)  

This article is cited in 19 scientific papers (total in 19 papers)

A numerical method for solving a linear time-optimal control problem

V. M. Aleksandrov

Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk

Full text: PDF file (1705 kB)
References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 1998, 38:6, 881–893

Bibliographic databases:
UDC: 519.626.1
MSC: Primary 49M27; Secondary 49M30, 49J15, 93C15, 34H05, 65K10
Received: 11.03.1997

Citation: V. M. Aleksandrov, “A numerical method for solving a linear time-optimal control problem”, Zh. Vychisl. Mat. Mat. Fiz., 38:6 (1998), 918–931; Comput. Math. Math. Phys., 38:6 (1998), 881–893

Citation in format AMSBIB
\by V.~M.~Aleksandrov
\paper A numerical method for solving a linear time-optimal control problem
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 1998
\vol 38
\issue 6
\pages 918--931
\jour Comput. Math. Math. Phys.
\yr 1998
\vol 38
\issue 6
\pages 881--893

Linking options:
  • http://mi.mathnet.ru/eng/zvmmf1869
  • http://mi.mathnet.ru/eng/zvmmf/v38/i6/p918

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. M. Aleksandrov, “Sequential synthesis of time-optimal control”, Comput. Math. Math. Phys., 39:9 (1999), 1402–1415  mathnet  mathscinet  zmath
    2. V. M. Aleksandrov, “Iteratsionnyi metod vychisleniya optimalnogo po bystrodeistviyu upravleniya kvazilineinymi sistemami”, Sib. zhurn. vychisl. matem., 6:3 (2003), 227–247  mathnet  zmath
    3. Aleksandrov V.M., “Adaptive suboptimal control of linear systems with interval coefficients”, Proceedings of the Second IASTED International Multi-Conference on Automation, Control, and Information Technology - Automation, Control, and Applications, 2005, 297–302  isi
    4. V. M. Aleksandrov, “Iteratsionnyi metod vychisleniya v realnom vremeni optimalnogo po bystrodeistviyu upravleniya”, Sib. zhurn. vychisl. matem., 10:1 (2007), 1–28  mathnet
    5. G. V. Shevchenko, “Numerical method for solving a nonlinear time-optimal control problem with additive control”, Comput. Math. Math. Phys., 47:11 (2007), 1768–1778  mathnet  crossref  mathscinet  elib  elib
    6. V. M. Aleksandrov, “Sequential synthesis of the time-optimal control in real time”, Autom. Remote Control, 69:8 (2008), 1271–1288  mathnet  crossref  mathscinet  zmath  isi
    7. V. M. Aleksandrov, “Optimalnoe po bystrodeistviyu upravlenie v realnom vremeni lineinymi sistemami s vozmuscheniyami”, Vestn. NGU. Ser. matem., mekh., inform., 8:3 (2008), 3–25  mathnet
    8. V. M. Aleksandrov, “A numerical method of solving a linear problem on a minimum consumption of resources”, Num. Anal. Appl., 2:3 (2009), 197–215  mathnet  crossref
    9. V. M. Aleksandrov, “Optimalnoe po bystrodeistviyu pozitsionno-programmnoe upravlenie lineinymi dinamicheskimi sistemami”, Sib. elektron. matem. izv., 6 (2009), 385–439  mathnet  mathscinet
    10. V. M. Aleksandrov, “Features of motion of dynamic systems with disturbances in the neighborhood of manifolds of switchings”, Autom. Remote Control, 70:4 (2009), 615–632  mathnet  crossref  mathscinet  zmath  isi
    11. V. M. Aleksandrov, “Optimal Resource Consumption Control of Disturbed Dynamic Systems”, J. Math. Sci., 186:3 (2012), 331–351  mathnet  crossref
    12. V. M. Aleksandrov, “Resource-optimal control of linear systems”, Comput. Math. Math. Phys., 51:4 (2011), 520–536  mathnet  crossref  mathscinet  isi
    13. V. M. Aleksandrov, “Approksimatsiya mnozhestv dostizhimosti i vychislenie optimalnogo po bystrodeistviyu upravleniya v realnom vremeni”, Sib. elektron. matem. izv., 8 (2011), 72–104  mathnet
    14. V. M. Aleksandrov, “Forming an approximating construction for calculation and implementation of optimal control in real time”, Num. Anal. Appl., 5:1 (2012), 1–16  mathnet  crossref  elib
    15. V. M. Aleksandrov, “Real-time computation of optimal control”, Comput. Math. Math. Phys., 52:10 (2012), 1351–1372  mathnet  crossref  mathscinet  zmath
    16. V. M. Aleksandrov, “Zadanie nachalnogo priblizheniya i metod vychisleniya optimalnogo upravleniya”, Sib. elektron. matem. izv., 11 (2014), 87–118  mathnet
    17. V. M. Aleksandrov, “Computing of optimal inertial control with a linear system”, Num. Anal. Appl., 8:1 (2015), 1–12  mathnet  crossref  mathscinet  elib
    18. V. M. Aleksandrov, “Optimal control of linear systems with interval constraints”, Comput. Math. Math. Phys., 55:5 (2015), 749–765  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    19. V. M. Aleksandrov, “Quasi-optimal control of dynamic systems”, Autom. Remote Control, 77:7 (2016), 1163–1179  mathnet  crossref  isi  elib  elib
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:251
    Full text:185
    First page:1

    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021