Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2007, Volume 47, Number 12, Pages 2014–2022 (Mi zvmmf208)  

On certain optimization methods with finite-step inner algorithms for convex finite-dimensional problems with inequality constraints

I. P. Antipin, A. Z. Ishmukhametov, Yu. G. Karyukina

Dorodnicyn Computing Center, Russian Academy of Sciences, ul. Vavilova 40, Moscow, 119991, Russia

Abstract: Numerical methods are proposed for solving finite-dimensional convex problems with inequality constraints satisfying the Slater condition. A method based on solving the dual to the original regularized problem is proposed and justified for problems having a strictly uniformly convex sum of the objective function and the constraint functions. Conditions for the convergence of this method are derived, and convergence rate estimates are obtained for convergence with respect to the functional, convergence with respect to the argument to the set of optimizers, and convergence to the $g$-normal solution. For more general convex finite-dimensional minimization problems with inequality constraints, two methods with finite-step inner algorithms are proposed. The methods are based on the projected gradient and conditional gradient algorithms. The paper is focused on finite-dimensional problems obtained by approximating infinite-dimensional problems, in particular, optimal control problems for systems with lumped or distributed parameters.

Key words: convex finite-dimensional optimization problems, inequality constraints, numerical optimization algorithms, regularization methods.

Full text: PDF file (1103 kB)
References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 2007, 47:12, 1928–1937

Bibliographic databases:

UDC: 519.658
Received: 06.05.2006
Revised: 26.04.2007

Citation: I. P. Antipin, A. Z. Ishmukhametov, Yu. G. Karyukina, “On certain optimization methods with finite-step inner algorithms for convex finite-dimensional problems with inequality constraints”, Zh. Vychisl. Mat. Mat. Fiz., 47:12 (2007), 2014–2022; Comput. Math. Math. Phys., 47:12 (2007), 1928–1937

Citation in format AMSBIB
\Bibitem{AntIshKar07}
\by I.~P.~Antipin, A.~Z.~Ishmukhametov, Yu.~G.~Karyukina
\paper On certain optimization methods with finite-step inner algorithms for convex finite-dimensional problems with inequality constraints
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2007
\vol 47
\issue 12
\pages 2014--2022
\mathnet{http://mi.mathnet.ru/zvmmf208}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2394961}
\transl
\jour Comput. Math. Math. Phys.
\yr 2007
\vol 47
\issue 12
\pages 1928--1937
\crossref{https://doi.org/10.1134/S0965542507120056}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-37649004071}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf208
  • http://mi.mathnet.ru/eng/zvmmf/v47/i12/p2014

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:287
    Full text:86
    References:34
    First page:1

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022