Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2007, Volume 47, Number 12, Pages 2023–2036 (Mi zvmmf209)  

This article is cited in 16 scientific papers (total in 16 papers)

Duality scheme for solving the semicoercive signorini problem with friction

E. M. Vikhtenko, R. V. Namm

Pacific Ocean State University, Tikhookeanskaya ul. 136, Khabarovsk, 680035, Russia

Abstract: The iterative Uzawa method with a modified Lagrangian functional is used to numerically solve the semicoercive Signorini problem with friction (quasi-variational inequality).

Key words: Signorini problem, saddle point, modified functional, Uzawa method.

Full text: PDF file (1088 kB)
References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 2007, 47:12, 1938–1951

Bibliographic databases:

UDC: 519.658
Received: 28.03.2007

Citation: E. M. Vikhtenko, R. V. Namm, “Duality scheme for solving the semicoercive signorini problem with friction”, Zh. Vychisl. Mat. Mat. Fiz., 47:12 (2007), 2023–2036; Comput. Math. Math. Phys., 47:12 (2007), 1938–1951

Citation in format AMSBIB
\Bibitem{VikNam07}
\by E.~M.~Vikhtenko, R.~V.~Namm
\paper Duality scheme for solving the semicoercive signorini problem with friction
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2007
\vol 47
\issue 12
\pages 2023--2036
\mathnet{http://mi.mathnet.ru/zvmmf209}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2394962}
\transl
\jour Comput. Math. Math. Phys.
\yr 2007
\vol 47
\issue 12
\pages 1938--1951
\crossref{https://doi.org/10.1134/S0965542507120068}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-37649021445}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf209
  • http://mi.mathnet.ru/eng/zvmmf/v47/i12/p2023

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. E. M. Vikhtenko, R. V. Namm, “Iterative proximal regularization of the modified Lagrangian functional for solving the quasi-variational Signorini inequality”, Comput. Math. Math. Phys., 48:9 (2008), 1536–1544  mathnet  crossref  mathscinet  isi
    2. R. V. Namm, S. A. Sachkov, “Solving the quasi-variational Signorini inequality by the method of successive approximations”, Comput. Math. Math. Phys., 49:5 (2009), 776–785  mathnet  crossref  zmath  isi
    3. E. M. Vikhtenko, R. V. Namm, “Kharakteristicheskie svoistva modifitsirovannogo funktsionala Lagranzha dlya kontaktnoi zadachi teorii uprugosti s zadannym treniem”, Dalnevost. matem. zhurn., 9:1-2 (2009), 38–47  mathnet
    4. È. M. Vikhtenko, G. Vu, R. V. Namm, “On the convergence of the Uzawa method with a modified Lagrange functional for variational inequalities in mechanics”, Comput. Math. Math. Phys., 50:8 (2010), 1289–1298  mathnet  crossref  mathscinet  adsnasa  isi
    5. Vikhtenko E.M., “Metod mnozhitelei Lagranzha dlya zadachi s prepyatstviem”, Vestn. Tikhookeanskogo gos. un-ta, 2010, no. 2, 35–46  elib
    6. N. N. Kushniruk, R. V. Namm, A. S. Tkachenko, “Stable smoothing method for solving a model mechanical problem with friction”, Comput. Math. Math. Phys., 51:6 (2011), 965–974  mathnet  crossref  mathscinet  isi
    7. E. M. Vikhtenko, “O metode poiska sedlovoi tochki modifitsirovannogo funktsionala Lagranzha dlya zadachi teorii uprugosti s zadannym treniem”, Dalnevost. matem. zhurn., 12:1 (2012), 3–11  mathnet
    8. E. M. Vikhtenko, N. N. Maksimova, R. V. Namm, “Modified Lagrange functionals to solve the variational and quasivariational inequalities of mechanics”, Autom. Remote Control, 73:4 (2012), 605–615  mathnet  crossref  isi
    9. N. N. Maksimova (Kushniruk), R. V. Namm, “Finite-element solution of a model mechanical problem with friction based on a smoothing Lagrange multiplier method”, Comput. Math. Math. Phys., 52:1 (2012), 20–30  mathnet  crossref  mathscinet  zmath  isi  elib  elib
    10. Vikhtenko E.M., “Reshenie kontaktnoi zadachi s treniem modifitsirovannymi skhemami dvoistvennosti”, Vestn. Tikhookeanskogo gos. un-ta, 2012, no. 2, 063–072  elib
    11. E. M. Vikhtenko, G. Woo, R. V. Namm, “Sensitivity functionals in contact problems of elasticity theory”, Comput. Math. Math. Phys., 54:7 (2014), 1190–1200  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    12. Namm R.V. Woo G., “Lagrange Multiplier Method For Solving Variational Inequality in Mechanics”, J. Korean. Math. Soc., 52:6 (2015), 1195–1207  crossref  mathscinet  zmath  isi  elib  scopus
    13. E. M. Vikhtenko, R. V. Namm, “O metode dvoistvennosti dlya resheniya modelnoi zadachi s treschinoi”, Tr. IMM UrO RAN, 22, no. 1, 2016, 36–43  mathnet  mathscinet  elib
    14. A. V. Zhiltsov, “Metod mnozhitelei Lagranzha dlya resheniya zadachi ob odnostoronnem kontakte uprugikh tel s ogranichennoi zonoi kontakta”, Matematicheskie zametki SVFU, 23:4 (2016), 99–114  mathnet  elib
    15. R. V. Namm, G. I. Tsoi, “The method of successive approximations for solving quasi-variational Signorini inequality”, Russian Math. (Iz. VUZ), 61:1 (2017), 39–46  mathnet  crossref  isi
    16. R. V. Namm, G. I. Tsoy, “A modified dual scheme for solving an elastic crack problem”, Num. Anal. Appl., 10:1 (2017), 37–46  mathnet  crossref  crossref  mathscinet  isi  elib
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:819
    Full text:233
    References:21
    First page:1

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022