Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 1996, Volume 36, Number 4, Pages 71–85 (Mi zvmmf2261)  

This article is cited in 16 scientific papers (total in 16 papers)

Difference schemes with fifth-order compact approximations for three-dimensional viscous gas flows

A. I. Tolstykh, D. A. Shirobokov

Moscow

Full text: PDF file (1532 kB)
References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 1996, 36:4, 477–489

Bibliographic databases:
UDC: 519.6.533.7
MSC: Primary 76M20; Secondary 65N06
Received: 14.12.1994

Citation: A. I. Tolstykh, D. A. Shirobokov, “Difference schemes with fifth-order compact approximations for three-dimensional viscous gas flows”, Zh. Vychisl. Mat. Mat. Fiz., 36:4 (1996), 71–85; Comput. Math. Math. Phys., 36:4 (1996), 477–489

Citation in format AMSBIB
\Bibitem{TolShi96}
\by A.~I.~Tolstykh, D.~A.~Shirobokov
\paper Difference schemes with fifth-order compact approximations for three-dimensional viscous gas flows
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 1996
\vol 36
\issue 4
\pages 71--85
\mathnet{http://mi.mathnet.ru/zvmmf2261}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1395123}
\zmath{https://zbmath.org/?q=an:1161.76533}
\transl
\jour Comput. Math. Math. Phys.
\yr 1996
\vol 36
\issue 4
\pages 477--489
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1996VU53300008}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf2261
  • http://mi.mathnet.ru/eng/zvmmf/v36/i4/p71

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. I. Pinchukov, “A compact sixth-order scheme for solving the Euler equations”, Comput. Math. Math. Phys., 38:10 (1998), 1648–1651  mathnet  mathscinet  zmath
    2. M. V. Lipavskii, A. I. Tolstykh, “Comparative efficiency of schemes based on upwind compact approximations”, Comput. Math. Math. Phys., 39:10 (1999), 1636–1650  mathnet  mathscinet  zmath
    3. A. I. Tolstykh, “Construction of schemes of prescribed order of accuracy with linear combinations of operators”, Comput. Math. Math. Phys., 40:8 (2000), 1159–1172  mathnet  mathscinet  zmath
    4. A. N. Minailos, “Computation of equations up to a prescribed accuracy with respect to singular terms and defect of differential equations”, Comput. Math. Math. Phys., 41:10 (2001), 1489–1505  mathnet  mathscinet  zmath
    5. M. V. Lipavskii, A. I. Tolstykh, E. N. Chigerëv, “A parallel computational scheme with ninth-order multioperator approximations and its application to direct numerical simulation”, Comput. Math. Math. Phys., 46:8 (2006), 1359–1377  mathnet  crossref  mathscinet
    6. B. V. Rogov, M. N. Mikhailovskaya, “Some aspects of compact difference scheme convergence”, Math. Models Comput. Simul., 1:1 (2009), 91–104  mathnet  crossref  mathscinet  zmath
    7. B. V. Rogov, M. N. Mikhailovskaya, “Monotone high-precision compact scheme for quasilinear hyperbolic equations”, Math. Models Comput. Simul., 4:4 (2012), 375–384  mathnet  crossref  mathscinet
    8. D. A. Shirobokov, “Third-order accurate finite-volume method on a triangular grid”, Comput. Math. Math. Phys., 51:10 (2011), 1805–1816  mathnet  crossref  mathscinet  isi
    9. Rogov B.V., Mikhailovskaya M.N., “Monotone High-Order Accurate Compact Scheme for Quasilinear Hyperbolic Equations”, Doklady Mathematics, 84:2 (2011), 747–752  crossref  mathscinet  zmath  isi  elib  elib  scopus
    10. M. N. Mikhailovskaya, B. V. Rogov, “Monotone compact running schemes for systems of hyperbolic equations”, Comput. Math. Math. Phys., 52:4 (2012), 672–695  mathnet  crossref  mathscinet  isi  elib  elib
    11. Rogov B.V., “Monotone Bicompact Scheme for Quasilinear Hyperbolic Equations”, Dokl. Math., 86:2 (2012), 715–719  crossref  zmath  isi  elib  scopus
    12. Rogov B.V., “High-Order Accurate Running Compact Scheme for Multidimensional Hyperbolic Equations”, Dokl. Math., 86:1 (2012), 582–586  crossref  mathscinet  zmath  isi  elib  elib  scopus
    13. Rogov B.V., “Monotonnaya bikompaktnaya skhema dlya kvazilineinykh uravnenii giperbolicheskogo tipa”, Doklady akademii nauk, 446:5 (2012), 504–504  mathscinet  zmath  elib
    14. B. V. Rogov, “High-order accurate monotone compact running scheme for multidimensional hyperbolic equations”, Comput. Math. Math. Phys., 53:2 (2013), 205–214  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    15. M. D. Bragin, B. V. Rogov, “Hybrid running schemes with upwind and bicompact symmetric differencing for hyperbolic equations”, Comput. Math. Math. Phys., 55:7 (2015), 1177–1187  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    16. Chikitkin A.V. Rogov B.V. Utyuzhnikov S.V., “High-Order Accurate Monotone Compact Running Scheme For Multidimensional Hyperbolic Equations”, Appl. Numer. Math., 93:SI (2015), 150–163  crossref  mathscinet  zmath  isi  elib  scopus
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:205
    Full text:96
    References:25
    First page:1

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021