Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2009, Volume 49, Number 3, Pages 512–517 (Mi zvmmf27)  

This article is cited in 6 scientific papers (total in 6 papers)

A two-stage difference method for solving the Dirichlet problem for the Laplace equation on a rectangular parallelepiped

E. A. Volkov

Institute of Mathematics, Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119333, Russia

Abstract: A novel two-stage difference method is proposed for solving the Dirichlet problem for the Laplace equation on a rectangular parallelepiped. At the first stage, approximate values of the sum of the pure fourth derivatives of the desired solution are sought on a cubic grid. At the second stage, the system of difference equations approximating the Dirichlet problem is corrected by introducing the quantities determined at the first stage. The difference equations at the first and second stages are formulated using the simplest six-point averaging operator. Under the assumptions that the given boundary values are six times differentiable at the faces of the parallelepiped, those derivatives satisfy the Hölder condition, and the boundary values are continuous at the edges and their second derivatives satisfy a matching condition implied by the Laplace equation, it is proved that the difference solution to the Dirichlet problem converges uniformly as $O(h^4\ln h^{-1})$, where $h$ is the mesh size.

Key words: numerical solution to the Laplace equation, convergence of difference solutions, domain in the form of a rectangular parallelepiped.

Full text: PDF file (710 kB)
References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 2009, 49:3, 496–501

Bibliographic databases:

UDC: 519.632.4
Received: 18.06.2008

Citation: E. A. Volkov, “A two-stage difference method for solving the Dirichlet problem for the Laplace equation on a rectangular parallelepiped”, Zh. Vychisl. Mat. Mat. Fiz., 49:3 (2009), 512–517; Comput. Math. Math. Phys., 49:3 (2009), 496–501

Citation in format AMSBIB
\Bibitem{Vol09}
\by E.~A.~Volkov
\paper A~two-stage difference method for solving the Dirichlet problem for the Laplace equation on a~rectangular parallelepiped
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2009
\vol 49
\issue 3
\pages 512--517
\mathnet{http://mi.mathnet.ru/zvmmf27}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2559797}
\elib{https://elibrary.ru/item.asp?id=11714015}
\transl
\jour Comput. Math. Math. Phys.
\yr 2009
\vol 49
\issue 3
\pages 496--501
\crossref{https://doi.org/10.1134/S0965542509030117}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000264922900011}
\elib{https://elibrary.ru/item.asp?id=13603654}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-64249100176}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf27
  • http://mi.mathnet.ru/eng/zvmmf/v49/i3/p512

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Berikelashvili G.K. Midodashvili B.G., “Compatible Convergence Estimates in the Method of Refinement By Higher-Order Differences”, Differ. Equ., 51:1 (2015), 107–115  crossref  mathscinet  zmath  isi  scopus
    2. Berikelashvili G., Midodashvili B., “on Increasing the Convergence Rate of Difference Solution To the Third Boundary Value Problem of Elasticity Theory”, Bound. Value Probl., 2015, 226  crossref  mathscinet  zmath  isi  elib  scopus
    3. Berikelashvili G., Gupta M.M., Midodashvili B., “on the Improvement of Convergence Rate of Difference Schemes With High Order Differences For a Convection-Diffusion Equation”, Proceedings of the International Conference of Numerical Analysis and Applied Mathematics 2014 (Icnaam-2014), AIP Conference Proceedings, 1648, eds. Simos T., Tsitouras C., Amer Inst Physics, 2015, UNSP 470002  crossref  mathscinet  isi  scopus
    4. Berikelashvili G. Midodashvili B., “Method of corrections by higher order differences for elliptic equations with variable coefficients”, Georgian Math. J., 23:2 (2016), 169–180  crossref  mathscinet  zmath  isi  elib  scopus
    5. Berikelashvili G., Midodashvili B., “Method of Corrections By Higher Order Differences For Poisson Equation With Nonlocal Boundary Conditions”, Trans. A Razmadze Math. Inst., 170:2 (2016), 287–296  crossref  mathscinet  zmath  isi
    6. Dosiyev A.A., Sarikaya H., “A Highly Accurate Difference Method For Solving the Dirichlet Problem For Laplace'S Equation on a Rectangle”, International Conference Functional Analysis in Interdisciplinary Applications (FAIA2017), AIP Conference Proceedings, 1880, eds. Kalmenov T., Sadybekov M., Amer Inst Physics, 2017, UNSP 040006  crossref  isi  scopus
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:416
    Full text:118
    References:36
    First page:5

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021