Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 1993, Volume 33, Number 5, Pages 796–805 (Mi zvmmf2723)  

This article is cited in 15 scientific papers (total in 15 papers)

The efficiency of Hausdorff algorithms for approximating convex bodies by polytopes

G. K. Kamenev

Moscow

Full text: PDF file (1176 kB)
References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 1993, 33:5, 709–716

Bibliographic databases:
UDC: 519.854.2
MSC: Primary 52A27; Secondary 68Q25
Received: 06.03.1992

Citation: G. K. Kamenev, “The efficiency of Hausdorff algorithms for approximating convex bodies by polytopes”, Zh. Vychisl. Mat. Mat. Fiz., 33:5 (1993), 796–805; Comput. Math. Math. Phys., 33:5 (1993), 709–716

Citation in format AMSBIB
\Bibitem{Kam93}
\by G.~K.~Kamenev
\paper The efficiency of Hausdorff algorithms for approximating convex bodies
by polytopes
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 1993
\vol 33
\issue 5
\pages 796--805
\mathnet{http://mi.mathnet.ru/zvmmf2723}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1218873}
\zmath{https://zbmath.org/?q=an:0804.52003}
\transl
\jour Comput. Math. Math. Phys.
\yr 1993
\vol 33
\issue 5
\pages 709--716
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1993MD81700011}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf2723
  • http://mi.mathnet.ru/eng/zvmmf/v33/i5/p796

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. G. K. Kamenev, “Analysis of an algorithm for approximating convex bodies”, Comput. Math. Math. Phys., 34:4 (1994), 521–528  mathnet  mathscinet  zmath  isi
    2. G. K. Kamenev, “Algoritm sblizhayuschikhsya mnogogrannikov”, Zh. vychisl. matem. i matem. fiz., 36:4 (1996), 134–147  mathnet  mathscinet  zmath
    3. G. K. Kamenev, “Efficient algorithms for approximation of nonsmooth convex bodies”, Comput. Math. Math. Phys., 39:3 (1999), 423–427  mathnet  mathscinet  zmath
    4. G. K. Kamenev, “On the approximation properties of nonsmooth convex disks”, Comput. Math. Math. Phys., 40:10 (2000), 1404–1414  mathnet  mathscinet  zmath  elib
    5. L. V. Burmistrova, “Analysis of a new method for approximation of convex compact bodies by polyhedra”, Comput. Math. Math. Phys., 40:10 (2000), 1415–1429  mathnet  mathscinet  zmath
    6. G. K. Kamenev, “Conjugate adaptive algorithms for polyhedral approximation of convex bodies”, Comput. Math. Math. Phys., 42:9 (2002), 1301–1316  mathnet  mathscinet  zmath
    7. R. V. Efremov, G. K. Kamenev, “A priori estimate for asymptotic efficiency of one class of algorithms for polyhedral approximation of convex bodies”, Comput. Math. Math. Phys., 42:1 (2002), 20–29  mathnet  mathscinet  zmath
    8. G. K. Kamenev, “Self-dual adaptive algorithms for polyhedral approximation of convex bodies”, Comput. Math. Math. Phys., 43:8 (2003), 1073–1086  mathnet  mathscinet  zmath
    9. R. V. Efremov, “An a priori estimate for the efficiency of adaptive algorithms for the polyhedral approximation of convex bodies”, Comput. Math. Math. Phys., 43:1 (2003), 146–156  mathnet  mathscinet  zmath
    10. Kamenev G.K., “A polyhedral approximation method for convex bodies that is optimal with respect to the order of the number of support and distance function evaluations”, Doklady Mathematics, 67:1 (2003), 137–139  isi
    11. E. M. Bronshtein, “Approximation of Convex Sets by Polytopes”, Journal of Mathematical Sciences, 153:6 (2008), 727–762  mathnet  crossref  mathscinet  zmath
    12. G. K. Kamenev, “The initial convergence rate of adaptive methods for polyhedral approximation of convex bodies”, Comput. Math. Math. Phys., 48:5 (2008), 724–738  mathnet  crossref  mathscinet  zmath  isi
    13. G. K. Kamenev, “Duality theory of optimal adaptive methods for polyhedral approximation of convex bodies”, Comput. Math. Math. Phys., 48:3 (2008), 376–394  mathnet  crossref  mathscinet  zmath  isi
    14. R. V. Efremov, G. K. Kamenev, “Optimal growth order of the number of vertices and facets in the class of Hausdorff methods for polyhedral approximation of convex bodies”, Comput. Math. Math. Phys., 51:6 (2011), 952–964  mathnet  crossref  mathscinet  isi
    15. G. K. Kamenev, A. I. Pospelov, “Polyhedral approximation of convex compact bodies by filling methods”, Comput. Math. Math. Phys., 52:5 (2012), 680–690  mathnet  crossref  mathscinet  isi  elib  elib
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:146
    Full text:68
    References:32
    First page:1

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021