RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 1992, Volume 32, Number 4, Pages 550–566 (Mi zvmmf2911)  

This article is cited in 15 scientific papers (total in 15 papers)

A difference approximation of a singularly perturbed boundary-value problem for quasilinear elliptic equations degenerating into first-order equations

G. I. Shishkin

Ekaterinburg

Full text: PDF file (1649 kB)
References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 1992, 32:4, 467–480

Bibliographic databases:
UDC: 519.632
MSC: Primary 65N06; Secondary 65N12, 35J65, 35B25
Received: 07.12.1990
Revised: 20.05.1991

Citation: G. I. Shishkin, “A difference approximation of a singularly perturbed boundary-value problem for quasilinear elliptic equations degenerating into first-order equations”, Zh. Vychisl. Mat. Mat. Fiz., 32:4 (1992), 550–566; Comput. Math. Math. Phys., 32:4 (1992), 467–480

Citation in format AMSBIB
\Bibitem{Shi92}
\by G.~I.~Shishkin
\paper A difference approximation of a singularly perturbed boundary-value problem for quasilinear elliptic equations degenerating into first-order equations
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 1992
\vol 32
\issue 4
\pages 550--566
\mathnet{http://mi.mathnet.ru/zvmmf2911}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1168684}
\zmath{https://zbmath.org/?q=an:0808.65102}
\transl
\jour Comput. Math. Math. Phys.
\yr 1992
\vol 32
\issue 4
\pages 467--480
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1992KV60300005}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf2911
  • http://mi.mathnet.ru/eng/zvmmf/v32/i4/p550

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. D. Liseǐkin, “A survey of methods for constructing structured adaptive grids”, Comput. Math. Math. Phys., 36:1 (1996), 1–32  mathnet  mathscinet  zmath  isi
    2. G. I. Shishkin, “Grid approximations of singularly perturbed systems for parabolic convection-diffusion equations with counterflow”, Sib. zhurn. vychisl. matem., 1:3 (1998), 281–297  mathnet  mathscinet  zmath
    3. G. I. Shishkin, “Finite-difference approximations for singularly perturbed elliptic equations”, Comput. Math. Math. Phys., 38:12 (1998), 1909–1921  mathnet  mathscinet  zmath
    4. G. I. Shishkin, “A grid approximation for the Riemann problem in the case of the Burgers equation”, Comput. Math. Math. Phys., 38:8 (1998), 1361–1363  mathnet  mathscinet  zmath
    5. G. I. Shishkin, “Increasing the accuracy of approximate solutions by residual correction for singularly perturbed equations with convective terms”, Russian Math. (Iz. VUZ), 43:5 (1999), 77–89  mathnet  mathscinet  zmath
    6. G. I. Shishkin, “Singularly perturbed boundary value problems with locally perturbed initial conditions: Equations with convective terms”, Comput. Math. Math. Phys., 39:2 (1999), 249–265  mathnet  mathscinet  zmath
    7. G. I. Shishkin, “Grid approximation of singularly perturbed boundary value problems on locally condensing grids: Convection-diffusion equations”, Comput. Math. Math. Phys., 40:5 (2000), 680–691  mathnet  mathscinet  zmath
    8. Farrell P.A., Hegarty A.F., Miller J.J.H., O'Riordan E., Shishkin G.I., “Numerical techniques for flow problems with singularities”, International Journal For Numerical Methods in Fluids, 43:8 (2003), 915–936  crossref  mathscinet  zmath  isi
    9. Linss T., “Layer-adapted meshes for convection-diffusion problems”, Comput Methods Appl Mech Engrg, 192:9–10 (2003), 1061–1105  crossref  mathscinet  zmath  isi
    10. G. I. Shishkin, “The use of solutions on embedded grids for the approximation of singularly perturbed parabolic convection-diffusion equations on adapted grids”, Comput. Math. Math. Phys., 46:9 (2006), 1539–1559  mathnet  crossref  mathscinet
    11. Shishkin G.I., “Using the technique of majorant functions in approximation of a singular perturbed parabolic convection-diffusion equation on adaptive grids”, Russian Journal of Numerical Analysis and Mathematical Modelling, 22:3 (2007), 263–289  crossref  mathscinet  zmath  isi
    12. G. I. Shishkin, L. P. Shishkina, “A Richardson scheme of an increased order of accuracy for a semilinear singularly perturbed elliptic convection-diffusion equation”, Comput. Math. Math. Phys., 50:3 (2010), 437–456  mathnet  crossref  mathscinet  adsnasa  isi
    13. Linss T., “Layer-Adapted Meshes for Reaction-Convection-Diffusion Problems Introduction”, Layer-Adapted Meshes for Reaction-Convection-Diffusion Problems, Lecture Notes in Mathematics, 1985, 2010, 1  crossref  mathscinet  isi
    14. Shishkin G.I., Shishkina L.P., “Iterative Newton solution method for the Richardson scheme for a semilinear singular perturbed elliptic convection-diffusion equation”, Russian J Numer Anal Math Modelling, 26:4 (2011), 427–445  crossref  mathscinet  zmath  isi  elib
    15. Zh. O. Dombrovskaya, “Metod konechnykh raznostei vo vremennoi oblasti dlya kusochno-odnorodnykh dielektricheskikh sred”, Model. i analiz inform. sistem, 23:5 (2016), 539–547  mathnet  crossref  mathscinet  elib
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:244
    Full text:83
    References:44
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020