RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2007, Volume 47, Number 4, Pages 665–670 (Mi zvmmf305)  

This article is cited in 5 scientific papers (total in 5 papers)

On a combined grid method for solving the Dirichlet problem for the Laplace equation in a rectangular parallelepiped

E. A. Volkov

Steklov Institute of Mathematics, Russian Academy of Sciences, ul. Vavilova 42, Moscow, 119991, Russia

Abstract: A combined grid method for solving the Dirichlet problem for the Laplace equation in a rectangular parallelepiped is proposed. At the grid points that are at the distance equal to the grid size from the boundary, the 6-point averaging operator is used. At the other grid points, the 26-point averaging operator is used. It is assumed that the boundary values have the third derivatives satisfying the Lipschitz condition on the faces; on the edges, they are continuous and their second derivatives satisfy the compatibility condition implied by the Laplace equation. The uniform convergence of the grid solution with the fourth order with respect to the grid size is proved.

Key words: Numerical solution of the Laplace equation, convergence of grid solutions, rectangular parallelepiped domain.

Full text: PDF file (722 kB)
References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 2007, 47:4, 638–643

Bibliographic databases:

UDC: 519.632.4
Received: 02.11.2006

Citation: E. A. Volkov, “On a combined grid method for solving the Dirichlet problem for the Laplace equation in a rectangular parallelepiped”, Zh. Vychisl. Mat. Mat. Fiz., 47:4 (2007), 665–670; Comput. Math. Math. Phys., 47:4 (2007), 638–643

Citation in format AMSBIB
\Bibitem{Vol07}
\by E.~A.~Volkov
\paper On a~combined grid method for solving the Dirichlet problem for the Laplace equation in a~rectangular parallelepiped
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2007
\vol 47
\issue 4
\pages 665--670
\mathnet{http://mi.mathnet.ru/zvmmf305}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2376630}
\zmath{https://zbmath.org/?q=an:05200950}
\transl
\jour Comput. Math. Math. Phys.
\yr 2007
\vol 47
\issue 4
\pages 638--643
\crossref{https://doi.org/10.1134/S0965542507040094}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34248136895}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf305
  • http://mi.mathnet.ru/eng/zvmmf/v47/i4/p665

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. E. A. Volkov, “A two-stage difference method for solving the Dirichlet problem for the Laplace equation on a rectangular parallelepiped”, Comput. Math. Math. Phys., 49:3 (2009), 496–501  mathnet  crossref  mathscinet  isi  elib  elib
    2. E. A. Volkov, “A modified combined grid method for solving the Dirichlet problem for the Laplace equation on a rectangular parallelepiped”, Comput. Math. Math. Phys., 50:2 (2010), 274–284  mathnet  crossref  mathscinet  adsnasa  isi
    3. E. A. Volkov, “Application of a 14-point averaging operator in the grid method”, Comput. Math. Math. Phys., 50:12 (2010), 2023–2032  mathnet  crossref  adsnasa
    4. Dosiyev A.A., “New properties of 9-point finite difference solution of the Laplace equation”, Mediterr. J. Math., 8:3 (2011), 451–462  crossref  mathscinet  zmath  isi  elib  scopus
    5. Comput. Math. Math. Phys., 52:6 (2012), 879–886  mathnet  crossref  isi  elib  elib
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:243
    Full text:116
    References:25
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020