Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2007, Volume 47, Number 4, Pages 693–716 (Mi zvmmf307)  

This article is cited in 4 scientific papers (total in 4 papers)

Numerical study of the basic stationary spherical couette flows at low Reynolds numbers

B. V. Pal'tsev, A. V. Stavtsev, I. I. Chechel'

Dorodnicyn Computing Center, Russian Academy of Sciences, ul. Vavilova 40, Moscow, 119991, Russia

Abstract: Previously developed iterative numerical methods with splitting of boundary conditions intended for solving an axisymmetric Dirichlet boundary value problem for the stationary Navier–Stokes system in spherical layers are used to study the basic spherical Couette flows (SCFs) of a viscous incompressible fluid in a wide range of outer-to-inner radius ratios $R/r$ ($1.1\le R/r\le100$) and to classify such SCFs. An important balance regime is found in the case of counter-rotating boundary spheres. The methods converge at low Reynolds numbers ($\mathrm{Re}$), but a comparison with experimental data for SCFs in thin spherical layers show that they converge for $\mathrm{Re}$ sufficiently close to $\mathrm{Re}_{\mathrm{cr}}$. The methods are second-order accurate in the max norm for both velocity and pressure and exhibit high convergence rates when applied to boundary value problems for Stokes systems arising at simple iterations with respect to nonlinearity. Numerical experiments show that the Richardson extrapolation procedure, combined with the methods as applied to solve the nonlinear problem, improves the accuracy up to the fourth and third orders for the stream function and velocity, respectively, while, for the pressure, the accuracy remains of the second order but the error is nevertheless noticeably reduced. This property is used to construct reliable patterns of stream-function level curves for large values of $R/r$. The possible configurations of fluid-particle trajectories are also discussed.

Key words: basic spherical Couette flows, classification, stationary Navier–Stokes system, incompressible fluid, methods with splitting of boundary conditions, spherical layers, Richardson extrapolation, trajectories of particles.

Full text: PDF file (3243 kB)
References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 2007, 47:4, 664–686

Bibliographic databases:

UDC: 519.634
Received: 21.07.2006
Revised: 24.11.2006

Citation: B. V. Pal'tsev, A. V. Stavtsev, I. I. Chechel', “Numerical study of the basic stationary spherical couette flows at low Reynolds numbers”, Zh. Vychisl. Mat. Mat. Fiz., 47:4 (2007), 693–716; Comput. Math. Math. Phys., 47:4 (2007), 664–686

Citation in format AMSBIB
\Bibitem{PalStaChe07}
\by B.~V.~Pal'tsev, A.~V.~Stavtsev, I.~I.~Chechel'
\paper Numerical study of the basic stationary spherical couette flows at low Reynolds numbers
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2007
\vol 47
\issue 4
\pages 693--716
\mathnet{http://mi.mathnet.ru/zvmmf307}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2376632}
\zmath{https://zbmath.org/?q=an:05200952}
\transl
\jour Comput. Math. Math. Phys.
\yr 2007
\vol 47
\issue 4
\pages 664--686
\crossref{https://doi.org/10.1134/S0965542507040112}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34248205588}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf307
  • http://mi.mathnet.ru/eng/zvmmf/v47/i4/p693

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. M. K. Kerimov, “Boris Vasil'evich Pal'tsev (on the occasion of his seventieth birthday)”, Comput. Math. Math. Phys., 50:7 (2010), 1113–1119  mathnet  crossref  mathscinet  adsnasa  isi  elib
    2. B. V. Pal'tsev, M. B. Soloviev, I. I. Chechel', “On the development of iterative methods with boundary condition splitting for solving boundary and initial-boundary value problems for the linearized and nonlinear Navier–Stokes equations”, Comput. Math. Math. Phys., 51:1 (2011), 68–87  mathnet  crossref  mathscinet  isi  elib
    3. B. V. Pal'tsev, M. B. Solov'ev, I. I. Chechel', “Numerical study of spherical Couette flows for certain zenith-angle-dependent rotations of boundary spheres at low Reynolds numbers”, Comput. Math. Math. Phys., 56:6 (2012), 940–975  mathnet  crossref  mathscinet  isi  elib  elib
    4. B. V. Pal'tsev, M. B. Solov'ev, I. I. Chechel', “On the structure of steady axisymmetric Navier-Stokes flows with a stream function having multiple local extrema in its definite-sign domains”, Comput. Math. Math. Phys., 53:11 (2013), 1696–1719  mathnet  crossref  crossref  mathscinet  isi  elib  elib
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:264
    Full text:100
    References:46
    First page:1

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021