Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2007, Volume 47, Number 2, Pages 189–196 (Mi zvmmf327)  

This article is cited in 17 scientific papers (total in 17 papers)

First-order methods for certain quasi-variational inequalities in a Hilbert space

I. P. Ryazantseva

Nizhni Novgorod State Technical University, ul. Minina 24, Nizhni Novgorod, 603600, Russia

Abstract: Sufficient conditions are obtained for quasi-variational inequalities of a special type with nonlinear operators in a Hilbert space to be uniquely solvable. A first-order continuous method and its discrete variant are constructed for inequalities of this kind. The strong convergence of these methods is proved.

Key words: quasi-variational inequalities, first-order continuous method, iterative method.

Full text: PDF file (985 kB)
References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 2007, 47:2, 183–190

Bibliographic databases:

UDC: 519.642.8
Received: 07.06.2006

Citation: I. P. Ryazantseva, “First-order methods for certain quasi-variational inequalities in a Hilbert space”, Zh. Vychisl. Mat. Mat. Fiz., 47:2 (2007), 189–196; Comput. Math. Math. Phys., 47:2 (2007), 183–190

Citation in format AMSBIB
\Bibitem{Rya07}
\by I.~P.~Ryazantseva
\paper First-order methods for certain quasi-variational inequalities in a~Hilbert space
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2007
\vol 47
\issue 2
\pages 189--196
\mathnet{http://mi.mathnet.ru/zvmmf327}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2351810}
\zmath{https://zbmath.org/?q=an:05200973}
\transl
\jour Comput. Math. Math. Phys.
\yr 2007
\vol 47
\issue 2
\pages 183--190
\crossref{https://doi.org/10.1134/S0965542507020030}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33947121112}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf327
  • http://mi.mathnet.ru/eng/zvmmf/v47/i2/p189

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. I. P. Ryazantseva, “Regularization methods for certain quasi-variational inequalities with inexactly given data in a Hilbert space”, Comput. Math. Math. Phys., 47:8 (2007), 1232–1242  mathnet  crossref  mathscinet
    2. Ryazantseva I.P., “Second-order methods for some quasivariational inequalities”, Differ. Equ., 44:7 (2008), 1006–1017  crossref  mathscinet  zmath  isi  elib  scopus
    3. A. S. Antipin, N. Mijailovic, M. Jacimovic, “A second-order continuous method for solving quasi-variational inequalities”, Comput. Math. Math. Phys., 51:11 (2011), 1856–1863  mathnet  crossref  mathscinet  isi
    4. Khan A.A., Sama M., “Optimal control of multivalued quasi variational inequalities”, Nonlinear Analysis-Theory Methods & Applications, 75:3 (2012), 1419–1428  crossref  mathscinet  zmath  isi  scopus
    5. A. S. Antipin, N. Mijailovic, M. Jacimovic, “A second-order iterative method for solving quasi-variational inequalities”, Comput. Math. Math. Phys., 53:3 (2013), 258–264  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    6. Facchinei F., Kanzow Ch., Sagratella S., “Qvilib: a Library of Quasi-Variational Inequality Test Problems”, Pac. J. Optim., 9:2 (2013), 225–250  mathscinet  zmath  isi
    7. Harms N. Kanzow Ch. Stein O., “Smoothness Properties of a Regularized Gap Function for Quasi-Variational Inequalities”, Optim. Method Softw., 29:4 (2014), 720–750  crossref  mathscinet  zmath  isi  elib  scopus
    8. Harms N., Hoheisel T., Kanzow Ch., “On a Smooth Dual Gap Function For a Class of Quasi-Variational Inequalities”, J. Optim. Theory Appl., 163:2 (2014), 413–438  crossref  mathscinet  zmath  isi  elib  scopus
    9. Facchinei F., Kanzow Ch., Sagratella S., “Solving Quasi-Variational Inequalities Via Their KKT Conditions”, Math. Program., 144:1-2 (2014), 369–412  crossref  mathscinet  zmath  isi  elib  scopus
    10. Facchinei F., Kanzow Ch., Karl S., Sagratella S., “the Semismooth Newton Method For the Solution of Quasi-Variational Inequalities”, Comput. Optim. Appl., 62:1, SI (2015), 85–109  crossref  mathscinet  zmath  isi  elib  scopus
    11. Latorre V., Sagratella S., “a Canonical Duality Approach For the Solution of Affine Quasi-Variational Inequalities”, Advances in Global Optimization, Springer Proceedings in Mathematics & Statistics, 95, eds. Gao D., Ruan N., Xing W., Springer, 2015, 315–323  crossref  mathscinet  zmath  isi  scopus
    12. Latorre V., Sagratella S., “a Canonical Duality Approach For the Solution of Affine Quasi-Variational Inequalities”, J. Glob. Optim., 64:3, SI (2016), 433–449  crossref  mathscinet  zmath  isi  elib  scopus
    13. Bigi G. Passacantando M., “Gap functions for quasi-equilibria”, J. Glob. Optim., 66:4 (2016), 791–810  crossref  mathscinet  zmath  isi  scopus
    14. Kanzow Ch., “On the multiplier-penalty-approach for quasi-variational inequalities”, Math. Program., 160:1-2 (2016), 33–63  crossref  mathscinet  zmath  isi  elib  scopus
    15. Bin-Mohsin B. Noor M.A. Noor Kh.I. Latif R., “Resolvent Dynamical Systems and Mixed Variational Inequalities”, J. Nonlinear Sci. Appl., 10:6 (2017), 2925–2933  crossref  mathscinet  isi
    16. Latorre V., Sagratella S., Gao D.Ya., “Canonical Dual Approach For Contact Mechanics Problems With Friction”, Canonical Duality Theory: Unified Methodology For Multidisciplinary Study, Advances in Mechanics and Mathematics, 37, eds. Gao D., Latorre V., Ruan N., Springer, 2017, 173–185  crossref  mathscinet  zmath  isi
    17. Antipin A.S. Jacimovic M. Mijajlovic N., “Extragradient Method For Solving Quasivariational Inequalities”, Optimization, 67:1 (2018), 103–112  crossref  mathscinet  zmath  isi  scopus
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:204
    Full text:89
    References:16
    First page:1

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021