Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 1988, Volume 28, Number 10, Pages 1498–1506 (Mi zvmmf3562)  

This article is cited in 17 scientific papers (total in 18 papers)

Generation of non-degenerate meshes

S. A. Ivanenko

Moscow

Full text: PDF file (1313 kB)

English version:
USSR Computational Mathematics and Mathematical Physics, 1988, 28:5, 141–146

Bibliographic databases:

UDC: 519.63
MSC: 65N50
Received: 24.09.1987
Revised: 29.03.1988

Citation: S. A. Ivanenko, “Generation of non-degenerate meshes”, Zh. Vychisl. Mat. Mat. Fiz., 28:10 (1988), 1498–1506; U.S.S.R. Comput. Math. Math. Phys., 28:5 (1988), 141–146

Citation in format AMSBIB
\Bibitem{Iva88}
\by S.~A.~Ivanenko
\paper Generation of non-degenerate meshes
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 1988
\vol 28
\issue 10
\pages 1498--1506
\mathnet{http://mi.mathnet.ru/zvmmf3562}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=973204}
\zmath{https://zbmath.org/?q=an:0658.65115}
\transl
\jour U.S.S.R. Comput. Math. Math. Phys.
\yr 1988
\vol 28
\issue 5
\pages 141--146
\crossref{https://doi.org/10.1016/0041-5553(88)90023-7}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf3562
  • http://mi.mathnet.ru/eng/zvmmf/v28/i10/p1498

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. A. Ivanenko, “Adaptive grids and grids on surfaces”, Comput. Math. Math. Phys., 33:9 (1993), 1179–1193  mathnet  mathscinet  zmath  isi
    2. S. A. Ivanenko, “Application of adaptive-harmonic grids for the numerical solution of problems with boundary and interior layers”, Comput. Math. Math. Phys., 35:10 (1995), 1203–1220  mathnet  mathscinet  zmath  isi
    3. S. A. Ivanenko, G. P. Prokopov, “Methods of adaptive harmonic grid generation”, Comput. Math. Math. Phys., 37:6 (1997), 627–645  mathnet  mathscinet  zmath
    4. A. A. Charakhch'yan, “An approach to reducing the computational cost of constructing curvilinear grids”, Comput. Math. Math. Phys., 38:2 (1998), 333–338  mathnet  mathscinet  zmath
    5. V. A. Garanzha, I. E. Kaporin, “Regularization of the barrier variational method of grid generation”, Comput. Math. Math. Phys., 39:9 (1999), 1426–1440  mathnet  mathscinet  zmath
    6. Garanzha V.A., “Barrier variational generation of quasi-isometric grids”, Numer Linear Algebra Appl, 8:5 (2001), 329–353  crossref  mathscinet  zmath  isi
    7. Comput. Math. Math. Phys., 43:6 (2003), 845–853  mathnet  mathscinet  zmath
    8. M. K. Kerimov, A. A. Charakhch'yan, “In memory of Sergeĭ Aleksandrovich Ivanenko”, Comput. Math. Math. Phys., 44:4 (2004), 723–726  mathnet  mathscinet  zmath
    9. Garanzha V.A., “Variational principles in grid generation and geometric modelling: theoretical justifications and open problems”, Numer Linear Algebra Appl, 11:5–6 (2004), 535–563  crossref  mathscinet  zmath  isi
    10. Garanzha V.A., “Quasi-isometric surface parameterization”, Applied Numerical Mathematics, 55:3 (2005), 295–311  crossref  mathscinet  zmath  isi  elib
    11. Makhanov S.S., “Adaptable geometric patterns for five-axis machining: a survey”, International Journal of Advanced Manufacturing Technology, 47:9–12 (2010), 1167–1208  crossref  isi
    12. B. N. Azarenok, A. A. Charakhch'yan, “On one problem of 2D regular grid generation based on mappings”, Math. Models Comput. Simul., 7:4 (2015), 303–314  mathnet  crossref  elib
    13. Garanzha V.A. Kudryavtseva L.N. Utyuzhnikov S.V., “Variational Method For Untangling and Optimization of Spatial Meshes”, J. Comput. Appl. Math., 269 (2014), 24–41  crossref  mathscinet  zmath  isi  elib
    14. Barrera Sanchez P. Garcia Cano G. Gonzalez Flores G., “Geometric Adaptive Functionals For Structured Grid Generation”, 11Th World Congress on Computational Mechanics; 5Th European Conference on Computational Mechanics; 6Th European Conference on Computational Fluid Dynamics, Vols II - Iv, ed. Onate E. Oliver X. Huerta A., Int Center Numerical Methods Engineering, 2014, 2590–2602  isi
    15. Moodleah S., Makhanov S.S., “5-Axis Machining Using a Curvilinear Tool Path Aligned With the Direction of the Maximum Removal Rate”, Int. J. Adv. Manuf. Technol., 80:1-4 (2015), 65–90  crossref  isi
    16. Moodleah S., Bohez E.J., Makhanov S.S., “Five-axis machining of STL surfaces by adaptive curvilinear toolpaths”, Int. J. Prod. Res., 54:24 (2016), 7296–7329  crossref  isi
    17. Garanzha V.A. Kudryavtseva L.N., “Hyperelastic Springback Technique For Construction of Prismatic Mesh Layers”, 26Th International Meshing Roundtable, (Imr26 2017), Procedia Engineering, 203, ed. Owen S. Roca X. Mitchell S., Elsevier Science BV, 2017, 401–413  crossref  isi
    18. Sukhinov A., Chistyakov A., Sidoryakina V., “Investigation of Nonlinear 2D Bottom Transportation Dynamics in Coastal Zone on Optimal Curvilinear Boundary Adaptive Grids”, Xiii International Scientific-Technical Conference Dynamic of Technical Systems (Dts-2017), Matec Web of Conferences, 132, eds. Najafabadi T., Sevostianov I., Yeghiazaryan K., Dong A., Mladenovic V., E D P Sciences, 2017, UNSP 04003  crossref  isi
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:175
    Full text:109
    First page:1

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021