Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 1988, Volume 28, Number 9, Pages 1386–1396 (Mi zvmmf3584)  

This article is cited in 16 scientific papers (total in 16 papers)

Construction of the convex hull of a finite set of points when the computations are approximate

O. L. Chernykh

Moscow

Full text: PDF file (1365 kB)

English version:
USSR Computational Mathematics and Mathematical Physics, 1988, 28:5, 71–77

Bibliographic databases:

UDC: 519.854
MSC: Primary 90C08; Secondary 52A20
Received: 29.06.1987
Revised: 12.10.1987

Citation: O. L. Chernykh, “Construction of the convex hull of a finite set of points when the computations are approximate”, Zh. Vychisl. Mat. Mat. Fiz., 28:9 (1988), 1386–1396; U.S.S.R. Comput. Math. Math. Phys., 28:5 (1988), 71–77

Citation in format AMSBIB
\Bibitem{Che88}
\by O.~L.~Chernykh
\paper Construction of the convex hull of a finite set of points when the computations are approximate
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 1988
\vol 28
\issue 9
\pages 1386--1396
\mathnet{http://mi.mathnet.ru/zvmmf3584}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=967533}
\zmath{https://zbmath.org/?q=an:0695.90060}
\transl
\jour U.S.S.R. Comput. Math. Math. Phys.
\yr 1988
\vol 28
\issue 5
\pages 71--77
\crossref{https://doi.org/10.1016/0041-5553(88)90010-9}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf3584
  • http://mi.mathnet.ru/eng/zvmmf/v28/i9/p1386

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. D. L. Kondratiev, A. V. Lotov, “External estimates and construction of attainability sets for controlled systems”, U.S.S.R. Comput. Math. Math. Phys., 30:2 (1990), 93–97  mathnet  crossref  mathscinet  zmath
    2. O. L. Chernykh, “Construction of the convex hull of a finite set of points using triangulation”, U.S.S.R. Comput. Math. Math. Phys., 31:8 (1991), 80–86  mathnet  mathscinet  zmath  isi
    3. O. L. Chernykh, “Construction of the convex hull of a point set as a system of linear inequalities”, Comput. Math. Math. Phys., 32:8 (1992), 1085–1096  mathnet  mathscinet  zmath  isi
    4. S. M. Dzholdybaeva, G. K. Kamenev, “Numerical analysis of the efficiency of an algorithm for approximating convex bodies by polyhedra”, Comput. Math. Math. Phys., 32:6 (1992), 739–746  mathnet  mathscinet  zmath  isi
    5. G. K. Kamenev, “Analysis of an algorithm for approximating convex bodies”, Comput. Math. Math. Phys., 34:4 (1994), 521–528  mathnet  mathscinet  zmath  isi
    6. D. B. Silin, N. G. Trin'ko, “A modification of Graham's algorithm for the convexification of a positive-uniform function”, Comput. Math. Math. Phys., 34:4 (1994), 545–548  mathnet  mathscinet  zmath  isi
    7. O. L. Chernykh, “Approximation of the Pareto-hull of a convex set by polyhedral sets”, Comput. Math. Math. Phys., 35:8 (1995), 1033–1039  mathnet  mathscinet  zmath  isi
    8. G. K. Kamenev, “Algoritm sblizhayuschikhsya mnogogrannikov”, Zh. vychisl. matem. i matem. fiz., 36:4 (1996), 134–147  mathnet  mathscinet  zmath
    9. L. V. Burmistrova, “Analysis of a new method for approximation of convex compact bodies by polyhedra”, Comput. Math. Math. Phys., 40:10 (2000), 1415–1429  mathnet  mathscinet  zmath
    10. Burmistrova L.V., Efremov R.V., Lotov A.V., “A decision-making visual support technique and its application in water resources management systems”, Journal of Computer and Systems Sciences International, 41:5 (2002), 759–769  isi
    11. R. V. Efremov, G. K. Kamenev, “A priori estimate for asymptotic efficiency of one class of algorithms for polyhedral approximation of convex bodies”, Comput. Math. Math. Phys., 42:1 (2002), 20–29  mathnet  mathscinet  zmath
    12. L. V. Burmistrova, “The experimental analysis of a new adaptive method for a polyhedral approximation of multidimensional convex bodies”, Comput. Math. Math. Phys., 43:3 (2003), 314–330  mathnet  mathscinet  zmath
    13. E. M. Bronshtein, “Approximation of Convex Sets by Polytopes”, Journal of Mathematical Sciences, 153:6 (2008), 727–762  mathnet  crossref  mathscinet  zmath
    14. Efremov R.V., Kamenev G.K., “Properties of a method for polyhedral approximation of the feasible criterion set in convex multiobjective problems”, Annals of Operations Research, 166:1 (2009), 271–279  crossref  mathscinet  zmath  isi
    15. Efremov R., Kamenev G., “Optimality of the Methods for Approximating the Feasible Criterion Set in the Convex Case”, Multiobjective Programming and Goal Programming: Theoretical Results and Practical Applications, Lecture Notes in Economics and Mathematical Systems, 618, 2009, 25–33  crossref  zmath  isi
    16. R. V. Efremov, “Convergence of hausdorff approximation methods for the Edgeworth–Pareto hull of a compact set”, Comput. Math. Math. Phys., 55:11 (2015), 1771–1778  mathnet  crossref  crossref  mathscinet  isi  elib
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:294
    Full text:247
    First page:1

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022