Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 1985, Volume 25, Number 9, Pages 1285–1292 (Mi zvmmf4115)  

This article is cited in 14 scientific papers (total in 14 papers)

An iterative method of construction of orthogonal projections of convex polyhedral sets

V. A. Bushenkov

Moscow

Full text: PDF file (1091 kB)

English version:
USSR Computational Mathematics and Mathematical Physics, 1985, 25:5, 1–5

Bibliographic databases:

UDC: 519.854.6
MSC: Primary 90C06; Secondary 65K05, 90-02
Received: 30.03.1984

Citation: V. A. Bushenkov, “An iterative method of construction of orthogonal projections of convex polyhedral sets”, Zh. Vychisl. Mat. Mat. Fiz., 25:9 (1985), 1285–1292; U.S.S.R. Comput. Math. Math. Phys., 25:5 (1985), 1–5

Citation in format AMSBIB
\Bibitem{Bus85}
\by V.~A.~Bushenkov
\paper An iterative method of construction of orthogonal projections of convex polyhedral sets
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 1985
\vol 25
\issue 9
\pages 1285--1292
\mathnet{http://mi.mathnet.ru/zvmmf4115}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=814476}
\zmath{https://zbmath.org/?q=an:0588.90057}
\transl
\jour U.S.S.R. Comput. Math. Math. Phys.
\yr 1985
\vol 25
\issue 5
\pages 1--5
\crossref{https://doi.org/10.1016/0041-5553(85)90170-3}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf4115
  • http://mi.mathnet.ru/eng/zvmmf/v25/i9/p1285

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. D. L. Kondratiev, A. V. Lotov, “External estimates and construction of attainability sets for controlled systems”, U.S.S.R. Comput. Math. Math. Phys., 30:2 (1990), 93–97  mathnet  crossref  mathscinet  zmath
    2. O. L. Chernykh, “Construction of the convex hull of a finite set of points using triangulation”, U.S.S.R. Comput. Math. Math. Phys., 31:8 (1991), 80–86  mathnet  mathscinet  zmath  isi
    3. S. M. Dzholdybaeva, G. K. Kamenev, “Numerical analysis of the efficiency of an algorithm for approximating convex bodies by polyhedra”, Comput. Math. Math. Phys., 32:6 (1992), 739–746  mathnet  mathscinet  zmath  isi
    4. G. K. Kamenev, “A class of adaptive algorithms for approximating convex bodies by polyhedra”, Comput. Math. Math. Phys., 32:1 (1992), 114–127  mathnet  mathscinet  zmath  isi
    5. G. K. Kamenev, “The efficiency of Hausdorff algorithms for approximating convex bodies by polytopes”, Comput. Math. Math. Phys., 33:5 (1993), 709–716  mathnet  mathscinet  zmath  isi
    6. G. K. Kamenev, “Analysis of an algorithm for approximating convex bodies”, Comput. Math. Math. Phys., 34:4 (1994), 521–528  mathnet  mathscinet  zmath  isi
    7. O. L. Chernykh, “Approximation of the Pareto-hull of a convex set by polyhedral sets”, Comput. Math. Math. Phys., 35:8 (1995), 1033–1039  mathnet  mathscinet  zmath  isi
    8. G. K. Kamenev, “Algoritm sblizhayuschikhsya mnogogrannikov”, Zh. vychisl. matem. i matem. fiz., 36:4 (1996), 134–147  mathnet  mathscinet  zmath
    9. G. K. Kamenev, “Efficient algorithms for approximation of nonsmooth convex bodies”, Comput. Math. Math. Phys., 39:3 (1999), 423–427  mathnet  mathscinet  zmath
    10. G. K. Kamenev, “Conjugate adaptive algorithms for polyhedral approximation of convex bodies”, Comput. Math. Math. Phys., 42:9 (2002), 1301–1316  mathnet  mathscinet  zmath
    11. R. V. Efremov, G. K. Kamenev, “A priori estimate for asymptotic efficiency of one class of algorithms for polyhedral approximation of convex bodies”, Comput. Math. Math. Phys., 42:1 (2002), 20–29  mathnet  mathscinet  zmath
    12. R. V. Efremov, “An a priori estimate for the efficiency of adaptive algorithms for the polyhedral approximation of convex bodies”, Comput. Math. Math. Phys., 43:1 (2003), 146–156  mathnet  mathscinet  zmath
    13. Kamenev G.K., “A polyhedral approximation method for convex bodies that is optimal with respect to the order of the number of support and distance function evaluations”, Doklady Mathematics, 67:1 (2003), 137–139  isi
    14. E. M. Bronshtein, “Approximation of Convex Sets by Polytopes”, Journal of Mathematical Sciences, 153:6 (2008), 727–762  mathnet  crossref  mathscinet  zmath
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:149
    Full text:89
    First page:1

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021