|
This article is cited in 50 scientific papers (total in 51 papers)
Monotonicity criteria for difference schemes designed for hyperbolic equations
A. S. Kholodovab, Ya. A. Kholodova a Moscow Institute of Physics and Technology, Institutskii
per. 9, Dolgoprudnyi, Moscow oblast, 141700, Russia
b Institute for Computer-Aided Design, Russian Academy of Sciences, Vtoraya Brestskaya ul. 19/18, Moscow, 123056, Russia
Abstract:
Previously formulated monotonicity criteria for explicit two-level difference schemes designed for hyperbolic equations (S. K. Godunov's, A. Harten's (TVD schemes), characteristic criteria) are extended to multileveled, including implicit, stencils. The characteristic monotonicity criterion is used to develop a universal algorithm for constructing high-order accurate nonlinear monotone schemes (for an arbitrary form of the desired solution) based on their analysis in the space of grid functions. Several new fourth-to-third-order accurate monotone difference schemes on a compact three-level stencil and nonexpanding (three-point) stencils are proposed for an extended system, which ensures their monotonicity for both the desired function and its derivatives. The difference schemes are tested using the characteristic monotonicity criterion and are extended to systems of hyperbolic equations.
Key words:
hyperbolic equations, difference schemes, monotonicity criteria for difference schemes, high-order accurate difference schemes.
Full text:
PDF file (4589 kB)
References:
PDF file
HTML file
English version:
Computational Mathematics and Mathematical Physics, 2006, 46:9, 1560–1588
Bibliographic databases:
UDC:
519.633 Received: 23.01.2006 Revised: 14.04.2006
Citation:
A. S. Kholodov, Ya. A. Kholodov, “Monotonicity criteria for difference schemes designed for hyperbolic equations”, Zh. Vychisl. Mat. Mat. Fiz., 46:9 (2006), 1638–1667; Comput. Math. Math. Phys., 46:9 (2006), 1560–1588
Citation in format AMSBIB
\Bibitem{KhoKho06}
\by A.~S.~Kholodov, Ya.~A.~Kholodov
\paper Monotonicity criteria for difference schemes designed for hyperbolic equations
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2006
\vol 46
\issue 9
\pages 1638--1667
\mathnet{http://mi.mathnet.ru/zvmmf415}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2287663}
\elib{https://elibrary.ru/item.asp?id=9276148}
\transl
\jour Comput. Math. Math. Phys.
\yr 2006
\vol 46
\issue 9
\pages 1560--1588
\crossref{https://doi.org/10.1134/S0965542506090089}
\elib{https://elibrary.ru/item.asp?id=13514044}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33749009288}
Linking options:
http://mi.mathnet.ru/eng/zvmmf415 http://mi.mathnet.ru/eng/zvmmf/v46/i9/p1638
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
A. K. Bordonos, Ya. A. Kholodov, A. S. Kholodov, I. I. Morozov, “Modelirovanie globalnykh energeticheskikh setei”, Matem. modelirovanie, 21:6 (2009), 3–16
-
I. E. Kvasov, S. A. Pankratov, I. B. Petrov, “Computation of dynamic processes in continuous media with a crack initiated by the near-surface disturbance using grid-characteristic method”, Math. Models Comput. Simul., 3:3 (2011), 399–409
-
O. V. Geller, M. O. Vasilev, Ya. A. Kholodov, “Postroenie vysokoproizvoditelnogo vychislitelnogo kompleksa dlya modelirovaniya zadach gazovoi dinamiki”, Kompyuternye issledovaniya i modelirovanie, 2:3 (2010), 309–317
-
B. Yu. Krysanov, V. E. Kunitsyn, A. S. Kholodov, “MHD-based simulation of ionospheric perturbations generated in the atmospheric surface layer”, Comput. Math. Math. Phys., 51:2 (2011), 264–283
-
Rogov B.V., Mikhailovskaya M.N., “Monotone bicompact schemes for a linear advection equation”, Dokl. Math., 83:1 (2011), 121–125
-
B. V. Rogov, M. N. Mikhailovskaya, “The monotonic bicompact schemes for a linear transfer equation”, Math. Models Comput. Simul., 4:1 (2012), 92–100
-
M. N. Mikhailovskaya, B. V. Rogov, “The bicompact monotonic schemes for a multidimensional linear transport equation”, Math. Models Comput. Simul., 4:3 (2012), 355–362
-
I. I. Morozov, A. V. Gasnikov, V. N. Tarasov, Ya. A. Kholodov, A. S. Kholodov, “Chislennoe issledovanie transportnykh potokov na osnove gidrodinamicheskikh modelei”, Kompyuternye issledovaniya i modelirovanie, 3:4 (2011), 389–412
-
I. E. Kvasov, I. B. Petrov, “High-performance computer simulation of wave processes in geological media in seismic exploration”, Comput. Math. Math. Phys., 52:2 (2012), 302–313
-
Rogov B.V., “High-Order Accurate Running Compact Scheme for Multidimensional Hyperbolic Equations”, Dokl. Math., 86:1 (2012), 582–586
-
B. V. Rogov, “High-order accurate monotone compact running scheme for multidimensional hyperbolic equations”, Comput. Math. Math. Phys., 53:2 (2013), 205–214
-
A. I. Tolstykh, “Hybrid schemes with high-order multioperators for computing discontinuous solutions”, Comput. Math. Math. Phys., 53:9 (2013), 1303–1322
-
V. I. Golubev, I. B. Petrov, N. I. Khokhlov, “Numerical simulation of seismic activity by the grid-characteristic method”, Comput. Math. Math. Phys., 53:10 (2013), 1523–1533
-
A. S. Kholodov, “Ob evolyutsii vozmuschenii, vyzvannykh dvizheniem meteoroidov v atmosfere Zemli”, Kompyuternye issledovaniya i modelirovanie, 5:6 (2013), 993–1030
-
I. B. Petrov, N. I. Khokhlov, “Modeling of 3D seismic problems using high-performance computing”, Math. Models Comput. Simul., 6:4 (2014), 342–350
-
I. B. Petrov, A. V. Favorskaya, N. I. Khokhlov, V. A. Miryaha, A. V. Sannikov, V. I. Golubev, “The monitoring state of a moving train using high performance systems and modern computational methods”, Math. Models Comput. Simul., 7:1 (2015), 51–61
-
Ya. A. Kholodov, A. E. Alekseenko, M. O. Vasilev, A. S. Kholodov, “Postroenie matematicheskoi modeli dorozhnogo perekrestka na osnove gidrodinamicheskogo podkhoda”, Kompyuternye issledovaniya i modelirovanie, 6:4 (2014), 503–522
-
V. I. Golubev, I. B. Petrov, N. I. Khokhlov, K. I. Shul'ts, “Numerical computation of wave propagation in fractured media by applying the grid-characteristic method on hexahedral meshes”, Comput. Math. Math. Phys., 55:3 (2015), 509–518
-
M. D. Bragin, B. V. Rogov, “Hybrid running schemes with upwind and bicompact symmetric differencing for hyperbolic equations”, Comput. Math. Math. Phys., 55:7 (2015), 1177–1187
-
E. N. Aristova, B. V. Rogov, A. V. Chikitkin, “Monotonization of high accuracy bicompact scheme for stationary multidimensional transport equation”, Math. Models Comput. Simul., 8:2 (2016), 108–117
-
Khokhlov N.I. Petrov I.B., “on Bicompact Grid-Characteristic Schemes For the Linear Advection Equation”, Dokl. Math., 92:3 (2015), 781–783
-
Khokhlov N. Yavich N. Malovichko M. Petrov I., “Solution of Large-Scale Seismic Modeling Problems”, 4Th International Young Scientist Conference on Computational Science, Procedia Computer Science, 66, ed. Sloot P. Boukhanovsky A. Athanassoulis G. Klimentov A., Elsevier Science BV, 2015, 191–199
-
Valentin A. Gushchin, “On a one family of quasimonotone finite-difference schemes of the second order of approximation”, Math. Models Comput. Simul., 8:5 (2016), 487–496
-
V. I. Golubev, I. B. Petrov, N. I. Khokhlov, “Compact grid-characteristic schemes of higher orders for 3D linear transport equation”, Math. Models Comput. Simul., 8:5 (2016), 577–584
-
A. V. Favorskaya, I. B. Petrov, “The study of increased order grid-characteristic methods on unstructured grids”, Num. Anal. Appl., 9:2 (2016), 171–178
-
E. N. Aristova, B. V. Rogov, A. V. Chikitkin, “Optimal monotonization of a high-order accurate bicompact scheme for the nonstationary multidimensional transport equation”, Comput. Math. Math. Phys., 56:6 (2016), 962–976
-
M. D. Bragin, B. V. Rogov, “Minimal dissipation hybrid bicompact schemes for hyperbolic equations”, Comput. Math. Math. Phys., 56:6 (2016), 947–961
-
V. A. Biryukov, V. A. Miryaha, I. B. Petrov, N. I. Khokhlov, “Simulation of elastic wave propagation in geological media: Intercomparison of three numerical methods”, Comput. Math. Math. Phys., 56:6 (2016), 1086–1095
-
A. E. Alekseenko, A. S. Kholodov, Ya. A. Kholodov, “Boundary control problems for quasilinear systems of hyperbolic equations”, Comput. Math. Math. Phys., 56:6 (2016), 916–931
-
Ya. A. Kholodov, M. O. Vasiliev, A. S. Kholodov, I. V. Tsybulin, “Developing the mathematical model for fine impurities spreading in ventilation networks”, Math. Models Comput. Simul., 9:2 (2017), 142–154
-
I. E. Kvasov, V. B. Leviant, I. B. Petrov, “Numerical study of wave propagation in porous media with the use of the grid-characteristic method”, Comput. Math. Math. Phys., 56:9 (2016), 1620–1630
-
Khokhlov N.I., Petrov I.B., “On one class of high-order compact grid-characteristic schemes for linear advection”, Russ. J. Numer. Anal. Math. Model, 31:6 (2016), 355–368
-
Favorskaya A. Petrov I. Khokhlov N., “Numerical Modeling of Wave Processes During Shelf Seismic Exploration”, Knowledge-Based and Intelligent Information & Engineering Systems: Proceedings of the 20Th International Conference Kes-2016, Procedia Computer Science, 96, ed. Howlett R. Jain L. Gabrys B. Toro C. Lim C., Elsevier Science BV, 2016, 920–929
-
Petrov I., “Computational problems in Arctic Research”, International Conference on Computer Simulation in Physics and Beyond 2015, Journal of Physics Conference Series, 681, IOP Publishing Ltd, 2016, 012026
-
D. P. Grigorevykh, N. I. Khokhlov, I. B. Petrov, “Raschet dinamicheskogo razrusheniya v tverdykh deformiruemykh telakh”, Matem. modelirovanie, 29:4 (2017), 45–58
-
A. V. Favorskaya, V. I. Golubev, “O primenenii formuly Releya na osnove integralnykh vyrazhenii Kirkhgofa k zadacham georazvedki”, Kompyuternye issledovaniya i modelirovanie, 9:5 (2017), 761–771
-
Stognii P.V. Petrov D.I. Khokhlov N.I. Petrov I.B., “Simulation of Seismic Processes in Geological Exploration of Arctic Shelf”, Russ. J. Numer. Anal. Math. Model, 32:6 (2017), 381–392
-
I. B. Petrov, “Problemy modelirovaniya prirodnykh i antropogennykh protsessov v Arkticheskoi zone Rossiiskoi Federatsii”, Matem. modelirovanie, 30:7 (2018), 103–136
-
P. V. Stognii, D. I. Petrov, N. I. Khokhlov, I. B. Petrov, “Chislennoe modelirovanie setochno-kharakteristicheskim metodom vliyaniya ledovykh obrazovanii na seismicheskie otkliki”, Matem. modelirovanie, 30:8 (2018), 107–115
-
Favorskaya A.V. Petrov I.B., “Theory and Practice of Wave Processes Modelling”, Innovations in Wave Processes Modelling and Decision Making: Grid-Characteristic Method and Applications, Smart Innovation Systems and Technologies, 90, ed. Favorskaya A. Petrov I., Springer-Verlag Berlin, 2018, 1–6
-
A. I. Lobanov, “Nauchnye i pedagogicheskie shkoly Aleksandra Sergeevicha Kholodova”, Kompyuternye issledovaniya i modelirovanie, 10:5 (2018), 561–579
-
A. M. Ivanov, N. I. Khokhlov, “Parallelnaya realizatsiya setochno-kharakteristicheskogo metoda v sluchae yavnogo vydeleniya kontaktnykh granits”, Kompyuternye issledovaniya i modelirovanie, 10:5 (2018), 667–678
-
Ya. A. Kholodov, A. S. Kholodov, I. V. Tsybulin, “Construction of monotone difference schemes for systems of hyperbolic equations”, Comput. Math. Math. Phys., 58:8 (2018), 1226–1246
-
A. V. Vasyukov, I. B. Petrov, “Grid-characteristic method on tetrahedral unstructured meshes with large topological inhomogeneities”, Comput. Math. Math. Phys., 58:8 (2018), 1259–1269
-
M. E. Ladonkina, O. A. Neklyudova, V. V. Ostapenko, V. F. Tishkin, “On the accuracy of the discontinuous Galerkin method in calculation of shock waves”, Comput. Math. Math. Phys., 58:8 (2018), 1344–1353
-
V. I. Golubev, O. Ya. Voinov, I. B. Petrov, “Seismic imaging of fractured elastic media on the basis of the grid-characteristic method”, Comput. Math. Math. Phys., 58:8 (2018), 1309–1315
-
Ya. A. Kholodov, “Razrabotka setevykh vychislitelnykh modelei dlya issledovaniya nelineinykh volnovykh protsessov na grafakh”, Kompyuternye issledovaniya i modelirovanie, 11:5 (2019), 777–814
-
A. V. Favorskaya, I. B. Petrov, “Raschet setochno-kharakteristicheskim metodom razrusheniya mnogoetazhnykh zdanii”, Matem. modelirovanie, 32:3 (2020), 102–114
-
A. I. Lobanov, F. Kh. Mirov, “Raznostnye skhemy dlya uravneniya perenosa so stokom na osnove analiza v prostranstve neopredelennykh koeffitsientov”, Matem. modelirovanie, 32:9 (2020), 53–72
-
P. V. Stognii, N. I. Khokhlov, I. B. Petrov, “Chislennoe modelirovanie rasprostraneniya uprugikh voln v geologicheskikh sredakh s gazovymi polostyami s ispolzovaniem setochno-kharakteristicheskogo metoda”, Sib. zhurn. vychisl. matem., 23:3 (2020), 325–338
-
A. I. Lobanov, F. Kh. Mirov, “Ispolzovanie raznostnykh skhem dlya uravneniya perenosa so stokom pri modelirovanii energosetei”, Kompyuternye issledovaniya i modelirovanie, 12:5 (2020), 1149–1164
|
Number of views: |
This page: | 854 | Full text: | 392 | References: | 59 | First page: | 1 |
|