Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 1985, Volume 25, Number 2, Pages 181–189 (Mi zvmmf4233)  

This article is cited in 7 scientific papers (total in 7 papers)

Some properties of the generalized gradient method

P. A. Dorofeev

Leningrad

Full text: PDF file (940 kB)

English version:
USSR Computational Mathematics and Mathematical Physics, 1985, 25:1, 117–122

Bibliographic databases:

UDC: 519.853.6
MSC: Primary 90C30; Secondary 49M37, 90C52
Received: 07.06.1983
Revised: 20.08.1983

Citation: P. A. Dorofeev, “Some properties of the generalized gradient method”, Zh. Vychisl. Mat. Mat. Fiz., 25:2 (1985), 181–189; U.S.S.R. Comput. Math. Math. Phys., 25:1 (1985), 117–122

Citation in format AMSBIB
\Bibitem{Dor85}
\by P.~A.~Dorofeev
\paper Some properties of the generalized gradient method
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 1985
\vol 25
\issue 2
\pages 181--189
\mathnet{http://mi.mathnet.ru/zvmmf4233}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=783413}
\zmath{https://zbmath.org/?q=an:0567.90082}
\transl
\jour U.S.S.R. Comput. Math. Math. Phys.
\yr 1985
\vol 25
\issue 1
\pages 117--122
\crossref{https://doi.org/10.1016/0041-5553(85)90051-5}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf4233
  • http://mi.mathnet.ru/eng/zvmmf/v25/i2/p181

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. K. Zavriev, “Convergence properties of the gradient method under conditions of variable-level inference”, U.S.S.R. Comput. Math. Math. Phys., 30:4 (1990), 24–32  mathnet  crossref  mathscinet  zmath
    2. S. K. Zavriev, A. G. Perevozchikov, “The method of generalized stochastic gradient for solving minimax problems with constrained variables”, U.S.S.R. Comput. Math. Math. Phys., 30:2 (1990), 98–105  mathnet  crossref  mathscinet  zmath
    3. S. K. Zavriev, A. G. Perevozchikov, “The direct Lyapunov method in investigating the attraction of trajectories of finite-difference inclusions”, U.S.S.R. Comput. Math. Math. Phys., 30:1 (1990), 15–22  mathnet  crossref  mathscinet  zmath
    4. A. G. Perevozchikov, “The approximation of generalized stochastic gradients of random regular functions”, U.S.S.R. Comput. Math. Math. Phys., 31:5 (1991), 28–33  mathnet  mathscinet  zmath  isi
    5. S. K. Zavriev, A. G. Perevozchikov, “A stochastic finite-difference algorithm for minimizing a maximin function”, U.S.S.R. Comput. Math. Math. Phys., 31:4 (1991), 107–110  mathnet  mathscinet  zmath  isi
    6. A. G. Perevozchikov, “Convergence of Clarke's generalized gradient method in problems of minimization of Lipschitz functions”, Comput. Math. Math. Phys., 32:2 (1992), 174–180  mathnet  mathscinet  isi
    7. A. M. Bagirov, “Discrete gradient as applied to the minimization of Lipschitzian functions”, Comput. Math. Math. Phys., 38:10 (1998), 1556–1565  mathnet  mathscinet  zmath
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:137
    Full text:71
    First page:1

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021