Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2006, Volume 46, Number 8, Pages 1392–1414 (Mi zvmmf426)  

This article is cited in 23 scientific papers (total in 23 papers)

Rosenbrock schemes with complex coefficients for stiff and differential algebraic systems

A. B. Alshina, E. A. Alshinaa, N. N. Kalitkinb, A. B. Koryaginac

a Faculty of Physics, Moscow State University, Leninskie gory, Moscow, 119992, Russia
b Institute of Mathematical Modeling, Russian Academy of Sciences, Miusskaya pl. 4a, Moscow, 125047, Russia
c Moscow State Institute of Electronic Engineering, Technical University, Zelenograd, Moscow, 103498, Russia

Abstract: Many applied problems are described by differential algebraic systems. Complex Rosenbrock schemes are proposed for the numerical integration of differential algebraic systems by the $\varepsilon$-embedding method. The method is proved to converge quadratically. The scheme is shown to be applicable even to superstiff systems. The method makes it possible to perform computations with a guaranteed accuracy. An equation is derived that describes the leading term of the error in the method as a function of time. An algorithm extending the method to systems of differential equations for complex-valued functions is proposed. Examples of numerical computations are given.

Key words: systems of stiff differential algebraic equations, Rosenbrock scheme with complex coefficients.

Full text: PDF file (3068 kB)
References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 2006, 46:8, 1320–1340

Bibliographic databases:

UDC: 519.622.2
Received: 24.03.2006

Citation: A. B. Alshin, E. A. Alshina, N. N. Kalitkin, A. B. Koryagina, “Rosenbrock schemes with complex coefficients for stiff and differential algebraic systems”, Zh. Vychisl. Mat. Mat. Fiz., 46:8 (2006), 1392–1414; Comput. Math. Math. Phys., 46:8 (2006), 1320–1340

Citation in format AMSBIB
\Bibitem{AlsAlsKal06}
\by A.~B.~Alshin, E.~A.~Alshina, N.~N.~Kalitkin, A.~B.~Koryagina
\paper Rosenbrock schemes with complex coefficients for stiff and differential algebraic systems
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2006
\vol 46
\issue 8
\pages 1392--1414
\mathnet{http://mi.mathnet.ru/zvmmf426}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2287358}
\transl
\jour Comput. Math. Math. Phys.
\yr 2006
\vol 46
\issue 8
\pages 1320--1340
\crossref{https://doi.org/10.1134/S0965542506080057}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33748314587}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf426
  • http://mi.mathnet.ru/eng/zvmmf/v46/i8/p1392

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. B. V. Rogov, M. N. Mikhailovskaya, “Some aspects of compact difference scheme convergence”, Math. Models Comput. Simul., 1:1 (2009), 91–104  mathnet  crossref  mathscinet  zmath
    2. L. M. Skvortsov, “An efficient scheme for the implementation of implicit Runge–Kutta methods”, Comput. Math. Math. Phys., 48:11 (2008), 2007–2017  mathnet  crossref  mathscinet  isi
    3. Yu. A. Sigunov, I. R. Didenko, “Kompleksnaya realizatsiya neyavnykh odnostadiinykh metodov do 4-go poryadka tochnosti pri chislennom integrirovanii sistem ODU”, Matem. modelirovanie, 23:1 (2011), 87–99  mathnet  mathscinet
    4. Sofronov V.N., Mokina K.S., Shemarulin V.E., “Raznostnye skhemy molekulyarnoi dinamiki. 1. sravnitelnyi analiz ustoichivosti, tochnosti i ekonomichnosti”, Voprosy atomnoi nauki i tekhniki. Seriya: Matematicheskoe modelirovanie fizicheskikh protsessov, 2011, no. 2, 18–32  elib
    5. M. P. Galanin, S. R. Khodzhaeva, “Metody resheniya zhestkikh obyknovennykh differentsialnykh uravnenii. Rezultaty testovykh raschetov”, Preprinty IPM im. M. V. Keldysha, 2013, 098, 29 pp.  mathnet
    6. M. P. Galanin, S. R. Khodzhaeva, “Razrabotka i testirovanie metodov resheniya zhestkikh obyknovennykh differentsialnykh uravnenii”, Mat. modelir. i chisl. metody, 2014, no. 4, 95–119  mathnet
    7. E. A. Bogatyreva, “Comparison of numerical modeling methods for quasi-steady process in conducting nondispersive medium with relaxation”, J. Comp. Eng. Math., 2:2 (2015), 13–18  mathnet  crossref  elib
    8. V. N. Sofronov, V. E. Shemarulin, “Classification of explicit three-stage symplectic difference schemes for the numerical solution of natural Hamiltonian systems: A comparative study of the accuracy of high-order schemes on molecular dynamics problems”, Comput. Math. Math. Phys., 56:4 (2016), 541–560  mathnet  crossref  crossref  mathscinet  isi  elib
    9. A. A. Melnikova, R. L. Argun, “Asimptotika statsionarnogo resheniya s vnutrennim perekhodnym sloem dlya sistemy tipa FittsKhyuЦNagumo”, Model. i analiz inform. sistem, 23:5 (2016), 559–567  mathnet  crossref  mathscinet  elib
    10. E. A. Bogatyreva, “The convergence of approximate solutions of the Cauchy problem for the model of quasi-steady process in conducting nondispersive medium with relaxation”, J. Comp. Eng. Math., 3:2 (2016), 25–31  mathnet  crossref  mathscinet  zmath  elib
    11. Korpusov M.O., Lukyanenko D.V., Panin A.A., Yushkov E.V., “Blow-up for one Sobolev problem: Theoretical approach and numerical analysis”, J. Math. Anal. Appl., 442:2 (2016), 451–468  crossref  mathscinet  zmath  isi  elib  scopus
    12. Koledina K.F., Gubaidullin I.M., “Kinetics and mechanism of olefin catalytic hydroalumination by organoaluminum compounds”, Russ. J. Phys. Chem. A, 90:5 (2016), 914–921  crossref  isi  elib  scopus
    13. Ikramova R.D., Mustafina S.A., “Numerical Study of the Oregonator Models on the Basis of the Two-Phase Rozenbrock's Method with Complex Coefficients”, Eng. J.-Thail., 20:1 (2016), 155–163  crossref  isi  scopus
    14. Koledina K.F., Koledin S.N., Shchadneva N.A., Gubaidullin I.M., “Kinetics and mechanism of the catalytic reaction between alcohols and dimethyl carbonate”, Russ. J. Phys. Chem. A, 91:3 (2017), 442–447  crossref  isi  elib  scopus
    15. M. O. Korpusov, D. V. Lukyanenko, E. A. Ovsyannikov, A. A. Panin, “Lokalnaya razreshimost i razrushenie resheniya odnogo uravneniya s kvadratichnoi nekoertsitivnoi nelineinostyu”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 10:2 (2017), 107–123  mathnet  crossref  elib
    16. D. V. Luk'yanenko, V. T. Volkov, N. N. Nefedov, “Dynamically adapted mesh construction for the efficient numerical solution of a singular perturbed reaction-diffusion-advection equation”, Model. i analiz inform. sistem, 24:3 (2017), 322–338  mathnet  crossref  elib
    17. Wu Sh.-L., “Three Rapidly Convergent Parareal Solvers With Application to Time-Dependent PDEs With Fractional Laplacian”, Math. Meth. Appl. Sci., 40:11 (2017), 3912–3926  crossref  mathscinet  zmath  isi  scopus
    18. Korpusov M.O., Lukyanenko D.V., Panin A.A., Yushkov E.V., “Blow-Up Phenomena in the Model of a Space Charge Stratification in Semiconductors: Analytical and Numerical Analysis”, Math. Meth. Appl. Sci., 40:7 (2017), 2336–2346  crossref  mathscinet  zmath  isi  scopus
    19. M. O. Korpusov, D. V. Lukyanenko, A. A. Panin, E. V. Yushkov, “Blow-up of solutions of a full non-linear equation of ion-sound waves in a plasma with non-coercive non-linearities”, Izv. Math., 82:2 (2018), 283–317  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    20. Lukyanenko D.V., Shishlenin M.A., Volkov V.T., “Solving of the Coefficient Inverse Problems For a Nonlinear Singularly Perturbed Reaction-Diffusion-Advection Equation With the Final Time Data”, Commun. Nonlinear Sci. Numer. Simul., 54 (2018), 233–247  crossref  mathscinet  isi  scopus
    21. M. O. Korpusov, D. V. Lukyanenko, A. D. Nekrasov, “Analytic-numerical investigation of combustion in a nonlinear medium”, Comput. Math. Math. Phys., 58:9 (2018), 1499–1509  mathnet  crossref  crossref  isi  elib
    22. M. O. Korpusov, A. K. Matveeva, D. V. Lukyanenko, “Diagnostika mgnovennogo razrusheniya resheniya v nelineinom uravnenii teorii voln v poluprovodnikakh”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 12:4 (2019), 104–113  mathnet  crossref
    23. A. A. Karpaev, R. R. Aliev, “Primenenie uproschennogo neyavnogo metoda Eilera dlya resheniya zadach elektrofiziologii”, Kompyuternye issledovaniya i modelirovanie, 12:4 (2020), 845–864  mathnet  crossref
  • ∆урнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:1303
    Full text:891
    References:49
    First page:1

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022