|
This article is cited in 3 scientific papers (total in 3 papers)
Uniqueness of the solution of the first boundary value problem in an unbounded domain for a second-order parabolic equation
L. I. Kamynin
Full text:
PDF file (1509 kB)
English version:
USSR Computational Mathematics and Mathematical Physics, 1984, 24:5, 32–40
Bibliographic databases:
UDC:
517.956.4 Received: 18.01.1983
Citation:
L. I. Kamynin, “Uniqueness of the solution of the first boundary value problem in an unbounded domain for a second-order parabolic equation”, Zh. Vychisl. Mat. Mat. Fiz., 24:9 (1984), 1331–1345; U.S.S.R. Comput. Math. Math. Phys., 24:5 (1984), 32–40
Citation in format AMSBIB
\Bibitem{Kam84}
\by L.~I.~Kamynin
\paper Uniqueness of the solution of the first boundary value problem in an unbounded domain for a~second-order parabolic equation
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 1984
\vol 24
\issue 9
\pages 1331--1345
\mathnet{http://mi.mathnet.ru/zvmmf4318}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=764205}
\zmath{https://zbmath.org/?q=an:0587.35043}
\transl
\jour U.S.S.R. Comput. Math. Math. Phys.
\yr 1984
\vol 24
\issue 5
\pages 32--40
\crossref{https://doi.org/10.1016/0041-5553(84)90152-6}
Linking options:
http://mi.mathnet.ru/eng/zvmmf4318 http://mi.mathnet.ru/eng/zvmmf/v24/i9/p1331
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Cherepova M.F., “O regulyarnosti reshenii kraevykh zadach dlya parabolicheskogo uravneniya vtorogo poryadka v vesovykh prostranstvakh geldera”, Differentsialnye uravneniya, 49:1 (2013), 79–79
-
V. F. Vil'danova, F. Kh. Mukminov, “Anisotropic uniqueness classes for a degenerate parabolic equation”, Sb. Math., 204:11 (2013), 1584–1597
-
V. F. Vil'danova, F. Kh. Mukminov, “Täcklind uniqueness classes for heat equation on noncompact Riemannian manifolds”, Ufa Math. J., 7:2 (2015), 55–63
|
Number of views: |
This page: | 163 | Full text: | 96 | First page: | 1 |
|