RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2006, Volume 46, Number 6, Pages 1074–1095 (Mi zvmmf460)  

On the construction of second-to-fourth-order accurate approximations of spatial derivatives on an arbitrary set of points

D. A. Shirobokov

Dorodnicyn Computing Center, Russian Academy of Sciences, ul. Vavilova 40, Moscow, 119991, Russia

Abstract: The method of undetermined coefficients generates a set of fixed-order approximations of spatial derivatives on an irregular stencil. An additional condition is proposed that singles out a unique scheme from this set. The resulting second-to-fourth order accurate approximations are applied to solving Poisson's and the biharmonic equations. The bending of a plate supported by an edge, the nonlinear bending of a circular plate, and two-dimensional problems in solid mechanics are discussed. A method is proposed for constructing oriented approximations, which are validated by solving an advection equation.

Key words: Poisson's equation, biharmonic equation, meshless methods, approximation of spatial derivatives.

Full text: PDF file (2754 kB)
References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 2006, 46:6, 1023–1043

Bibliographic databases:

UDC: 519.634
Received: 30.01.2004
Revised: 26.01.2006

Citation: D. A. Shirobokov, “On the construction of second-to-fourth-order accurate approximations of spatial derivatives on an arbitrary set of points”, Zh. Vychisl. Mat. Mat. Fiz., 46:6 (2006), 1074–1095; Comput. Math. Math. Phys., 46:6 (2006), 1023–1043

Citation in format AMSBIB
\Bibitem{Shi06}
\by D.~A.~Shirobokov
\paper On the construction of second-to-fourth-order accurate approximations of spatial derivatives on an arbitrary set of points
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2006
\vol 46
\issue 6
\pages 1074--1095
\mathnet{http://mi.mathnet.ru/zvmmf460}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2285366}
\transl
\jour Comput. Math. Math. Phys.
\yr 2006
\vol 46
\issue 6
\pages 1023--1043
\crossref{https://doi.org/10.1134/S0965542506060108}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746136013}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf460
  • http://mi.mathnet.ru/eng/zvmmf/v46/i6/p1074

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:329
    Full text:205
    References:40
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021