RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Ж. вычисл. матем. и матем. физ.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Ж. вычисл. матем. и матем. физ., 2009, том 49, номер 5, страницы 902–915 (Mi zvmmf4694)  

Изучение устойчивости плоского течения Куэтта для кинетического модельного уравнения

О. В. Ильин

119333 Москва, ул. Вавилова, 40, ВЦ РАН

Аннотация: Рассмотрена устойчивость плоского течения Куэтта с помощью упрощенного модельного уравнения Больцмана (уравнение БГК) с отсеченными высокими модами в пространстве скоростей и координат. В качестве стационарного решения берется решение уравнения Навье–Стокса с малыми добавками, зависящими от числа Кнудсена. Возмущения рассматриваются зависящими только от координаты, поперечной по отношению к течению. Возмущения плотности считаются не равными нулю. В данном приближении обнаружена неустойчивость задачи при малых числах Кнудсена. Библ. 12. Фиг. 1.

Ключевые слова: плоская задача Куэтта, устойчивость в линейном приближении, уравнение БГК, уравнение Навье–Стокса, метод Галеркина.

Полный текст: PDF файл (1588 kB)
Список литературы: PDF файл   HTML файл

Англоязычная версия:
Computational Mathematics and Mathematical Physics, 2009, 49:5, 867–880

Реферативные базы данных:

Тип публикации: Статья
УДК: 519.634
Поступила в редакцию: 10.04.2008

Образец цитирования: О. В. Ильин, “Изучение устойчивости плоского течения Куэтта для кинетического модельного уравнения”, Ж. вычисл. матем. и матем. физ., 49:5 (2009), 902–915; Comput. Math. Math. Phys., 49:5 (2009), 867–880

Цитирование в формате AMSBIB
\RBibitem{Ily09}
\by О.~В.~Ильин
\paper Изучение устойчивости плоского течения Куэтта для кинетического модельного уравнения
\jour Ж. вычисл. матем. и матем. физ.
\yr 2009
\vol 49
\issue 5
\pages 902--915
\mathnet{http://mi.mathnet.ru/zvmmf4694}
\zmath{https://zbmath.org/?q=an:1177.76371}
\transl
\jour Comput. Math. Math. Phys.
\yr 2009
\vol 49
\issue 5
\pages 867--880
\crossref{https://doi.org/10.1134/S0965542509050121}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000266139300012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-67649095710}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/zvmmf4694
  • http://mi.mathnet.ru/rus/zvmmf/v49/i5/p902

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Просмотров:
    Эта страница:338
    Полный текст:120
    Литература:51
    Первая стр.:8
     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2020