Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2009, Volume 49, Number 7, Pages 1158–1166 (Mi zvmmf4714)  

This article is cited in 2 scientific papers (total in 2 papers)

On estimates for the Fourier-Bessel integral transform in the space $L_2(\mathbb R_+)$

V. A. Abilova, F. V. Abilovab, M. K. Kerimovc

a Dagestan State University, ul. Gadzhieva 43a, Makhachkala, 367025, Russia
b Dagestan State Technical University, pr. Kalinina 70, Makhachkala, 367015, Russia
c Dorodnicyn Computing Center, Russian Academy of Sciences, ul. Vavilova 40, Moscow, 119991, Russia

Abstract: Two estimates useful in applications are proved for the Fourier–Bessel integral transform in$L_2(\mathbb R_+)$ as applied to some classes of functions characterized by a generalized modulus of continuity.

Key words: Fourier–Bessel integral transform, Bessel operator, generalized shift operator, generalized modulus of continuity, generalized derivatives, estimate.

Full text: PDF file (690 kB)
References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 2009, 49:7, 1103–1110

Bibliographic databases:

UDC: 519.651
Received: 10.11.2008
Revised: 20.02.2009

Citation: V. A. Abilov, F. V. Abilova, M. K. Kerimov, “On estimates for the Fourier-Bessel integral transform in the space $L_2(\mathbb R_+)$”, Zh. Vychisl. Mat. Mat. Fiz., 49:7 (2009), 1158–1166; Comput. Math. Math. Phys., 49:7 (2009), 1103–1110

Citation in format AMSBIB
\Bibitem{AbiAbiKer09}
\by V.~A.~Abilov, F.~V.~Abilova, M.~K.~Kerimov
\paper On estimates for the Fourier-Bessel integral transform in the space $L_2(\mathbb R_+)$
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2009
\vol 49
\issue 7
\pages 1158--1166
\mathnet{http://mi.mathnet.ru/zvmmf4714}
\elib{https://elibrary.ru/item.asp?id=12450178}
\transl
\jour Comput. Math. Math. Phys.
\yr 2009
\vol 49
\issue 7
\pages 1103--1110
\crossref{https://doi.org/10.1134/S0965542509070033}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000268295700003}
\elib{https://elibrary.ru/item.asp?id=15300191}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70349937860}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf4714
  • http://mi.mathnet.ru/eng/zvmmf/v49/i7/p1158

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. A. Abilov, M. K. Kerimov, “Estimates for the Fourier–Bessel transforms of multivariate functions”, Comput. Math. Math. Phys., 52:6 (2012), 836–845  mathnet  crossref  mathscinet  adsnasa  isi  elib  elib
    2. V. A. Abilov, F. V. Abilova, M. K. Kerimov, “Some new estimates of the Fourier–Bessel transform in the space $\mathbb{L}_2(\mathbb{R}_+)$”, Comput. Math. Math. Phys., 53:10 (2013), 1440–1446  mathnet  crossref  crossref  mathscinet  isi  elib  elib
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:424
    Full text:163
    References:61
    First page:21

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021