Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
General information
Latest issue
Impact factor

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS

Zh. Vychisl. Mat. Mat. Fiz.:

Personal entry:
Save password
Forgotten password?

Zh. Vychisl. Mat. Mat. Fiz., 2006, Volume 46, Number 5, Pages 887–901 (Mi zvmmf472)  

This article is cited in 5 scientific papers (total in 5 papers)

Mathematical simulation of laser induced melting and evaporation of multilayer materials

O. N. Korolëvaa, V. I. Mazhukinb

a Moscow University of Humanities, Russian Academy of Sciences, pl. Yunosti 5/1, Moscow, 111395, Russia
b Institute of Mathematical Modeling, Miusskaya pl. 4a, Moscow, 125047, Russia

Abstract: Using the laser induced remelting of a three-layer target Al+Ni+Cr as an example, the use of the dynamic adaptation for solving the multifront Stefan problem with explicit tracking of the melting and evaporation fronts is considered. The dynamic adaptation is used to construct quasi-uniform grids in regions with moving boundaries. The characteristic size of those regions may vary by several orders of magnitude in the process of computations. The algorithm used to construct the grids takes into account the varying size of the region and the velocity of the boundary motion, which makes it possible to automatically distribute the grid points without using fitting parameters. The mathematical simulation of the doping process using the melt with respect to the thick substrate and thin doping layers showed the importance of the sequencing of coatings. The computations showed that if the upper exposed layer is chromium, then it can completely evaporate or sublimate by the end of the pulse due to its heat-transfer properties. This can be easily changed if the doping layers are arranged according to the scheme Al+Cr+Ni. Then, the upper exposed layer is nickel, which is not so easily evaporated.

Key words: dynamic adaptation, mathematical simulation, grid generation, difference schemes, phase transitions, laser action, multilayer target, multifront Stefan problem.

Full text: PDF file (2017 kB)
References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 2006, 46:5, 848–862

Bibliographic databases:

UDC: 519.634
Received: 09.09.2005

Citation: O. N. Korolëva, V. I. Mazhukin, “Mathematical simulation of laser induced melting and evaporation of multilayer materials”, Zh. Vychisl. Mat. Mat. Fiz., 46:5 (2006), 887–901; Comput. Math. Math. Phys., 46:5 (2006), 848–862

Citation in format AMSBIB
\by O.~N.~Korol\"eva, V.~I.~Mazhukin
\paper Mathematical simulation of laser induced melting and evaporation of multilayer materials
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2006
\vol 46
\issue 5
\pages 887--901
\jour Comput. Math. Math. Phys.
\yr 2006
\vol 46
\issue 5
\pages 848--862

Linking options:
  • http://mi.mathnet.ru/eng/zvmmf472
  • http://mi.mathnet.ru/eng/zvmmf/v46/i5/p887

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. M. G. Lobok, V. I. Mazhukin, “Vliyanie vremennogo profilya impulsov na protsessy lazernogo vozdeistviya”, Matem. modelirovanie, 19:9 (2007), 54–78  mathnet  mathscinet  zmath
    2. P. V. Breslavskii, V. I. Mazhukin, “Modelirovanie vzaimodeistviya udarnykh voln na dinamicheski adaptiruyuschikhsya setkakh”, Matem. modelirovanie, 19:11 (2007), 83–95  mathnet  mathscinet  zmath  elib
    3. P. V. Breslavskiy, V. I. Mazhukin, “Dynamically adapted grids for interacting discontinuous solutions”, Comput. Math. Math. Phys., 47:4 (2007), 687–706  mathnet  crossref  mathscinet  zmath  elib  elib
    4. Koroleva O.N., Mazhukin A.V., “Comparative analysis of optoacoustic pulses in aluminum and silicon”, Journal of Optical Technology, 78:8 (2011), 529–536  crossref  isi  scopus
    5. Mazhukin V.I. Shapranov A.V. Mazhukin A.V. Koroleva O.N., “Mathematical Formulation of a Kinetic Version of Stefan Problem For Heterogeneous Melting/Crystallization of Metals”, Math. Montisnigri, 36 (2016), 58–77  mathscinet  zmath  isi
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:560
    Full text:265
    First page:1

    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021