Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2009, Volume 49, Number 8, Pages 1497–1502 (Mi zvmmf4741)  

Exact soliton solutions for the general fifth Korteweg–de Vries equation

W. Long

Institute of Mathematics, Hangzhou Dianzi University, Xiasha, Hangzhou, Zhejiang 310018, China

Abstract: With the aid of computer symbolic computation system such as Maple, the extended hyperbolic function method and the Hirota's bilinear formalism combined with the simplified Hereman form are applied to determine the soliton solutions for the general fifth-order KdV equation. Several new soliton solutions can be obtained if we taking parameters properly in these solutions. The employed methods are straightforward and concise, and they can also be applied to other nonlinear evolution equations in mathematical physics.

Key words: the extended hyperbolic functions method; Hirota's direct method; Hereman's method; fifth-order KdV equation; soliton solutions.

Full text: PDF file (719 kB)
References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 2009, 49:8, 1429–1434

Bibliographic databases:

UDC: 519.634
Received: 28.11.2008
Language:

Citation: W. Long, “Exact soliton solutions for the general fifth Korteweg–de Vries equation”, Zh. Vychisl. Mat. Mat. Fiz., 49:8 (2009), 1497–1502; Comput. Math. Math. Phys., 49:8 (2009), 1429–1434

Citation in format AMSBIB
\Bibitem{Lon09}
\by W.~Long
\paper Exact soliton solutions for the general fifth Korteweg--de Vries equation
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2009
\vol 49
\issue 8
\pages 1497--1502
\mathnet{http://mi.mathnet.ru/zvmmf4741}
\zmath{https://zbmath.org/?q=an:05649690}
\transl
\jour Comput. Math. Math. Phys.
\yr 2009
\vol 49
\issue 8
\pages 1429--1434
\crossref{https://doi.org/10.1134/S0965542509080120}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000269218300012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70350588892}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf4741
  • http://mi.mathnet.ru/eng/zvmmf/v49/i8/p1497

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:192
    Full text:69
    References:21
    First page:5

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022