Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2009, Volume 49, Number 10, Pages 1844–1852 (Mi zvmmf4773)  

This article is cited in 5 scientific papers (total in 5 papers)

Numerical simulation of unsteady flows with transient regimes

V. I. Pinchukov

Institute of Computational Technologies, Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrent'eva 6, Novosibirsk, 630090, Russia

Abstract: Self-oscillatory flows in aerodynamics and astrophysics are studied. The two-dimensional compressible gas equations are solved using the implicit Runge–Kutta scheme of the third order with respect to the inviscid terms and of the second order with respect to the viscous terms. An algebraic Cebeci–Smith turbulence model is used. Weakly unsteady and strongly unsteady flow regimes are observed. The former occur in a supersonic flow past a cylinder with a front projection and in the heliosphere. Such flows became stable when the turbulent diffusion is taken into account. The latter flows occur when a supersonic jet meets an obstacle and when such a jet penetrates a cavity. In these flows, the amplitude of oscillations slightly decreases when the turbulent diffusion is taken into account.

Key words: numerical simulation of unsteady flows, Cebeci–Smith turbulence model, implicit Runge–Kutta scheme, self-oscillatory flows.

Full text: PDF file (2033 kB)
References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 2009, 49:10, 1765–1773

Bibliographic databases:

UDC: 519.634
Received: 29.08.2008
Revised: 12.05.2009

Citation: V. I. Pinchukov, “Numerical simulation of unsteady flows with transient regimes”, Zh. Vychisl. Mat. Mat. Fiz., 49:10 (2009), 1844–1852; Comput. Math. Math. Phys., 49:10 (2009), 1765–1773

Citation in format AMSBIB
\Bibitem{Pin09}
\by V.~I.~Pinchukov
\paper Numerical simulation of unsteady flows with transient regimes
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2009
\vol 49
\issue 10
\pages 1844--1852
\mathnet{http://mi.mathnet.ru/zvmmf4773}
\transl
\jour Comput. Math. Math. Phys.
\yr 2009
\vol 49
\issue 10
\pages 1765--1773
\crossref{https://doi.org/10.1134/S0965542509100108}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000270979900010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-76349085160}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf4773
  • http://mi.mathnet.ru/eng/zvmmf/v49/i10/p1844

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. I. Pinchukov, “Modeling of self-oscillations and searching of new self-oscillatory flows”, Math. Models Comput. Simul., 4:2 (2012), 172–180  mathnet  crossref
    2. Pinchukov V.I., “O chislennom issledovanii avtokolebatelnogo obtekaniya zatuplennykh konusov neodnorodnym potokom”, Vychislitelnye tekhnologii, 16:3 (2011), 64–70  elib
    3. Pinchukov V.I., “Modelirovanie dinamiki nestatsionarnogo obtekaniya zatuplennykh tel na bolshikh intervalakh po vremeni”, Vychislitelnye tekhnologii, 18:1 (2013), 74–86  elib
    4. V. V. Kuzenov, S. V. Ryzhkov, “Mathematical Modeling of Plasma Dynamics for Processes in Capillary Discharges”, Rus. J. Nonlin. Dyn., 15:4 (2019), 543–550  mathnet  crossref  elib
    5. V. V. Kuzenov, S. V. Ryzhkov, A. V. Starostin, “Development of a Mathematical Model and the Numerical Solution Method in a Combined Impact Scheme for MIF Target”, Rus. J. Nonlin. Dyn., 16:2 (2020), 325–341  mathnet  crossref
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:237
    Full text:91
    References:30
    First page:3

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021