RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2009, Volume 49, Number 12, Pages 2103–2113 (Mi zvmmf4792)  

This article is cited in 4 scientific papers (total in 4 papers)

Study of an adaptive single-phase method for approximating the multidimensional Pareto frontier in nonlinear systems

G. K. Kamenev

Dorodnicyn Computing Center, Russian Academy of Sciences, ul. Vavilova 40, Moscow, 119333, Russia

Abstract: The problem of approximating the Pareto frontier (nondominated frontier) of the feasible set of criteria vectors in nonlinear multicriteria optimization problems is considered. The problem is solved by approximating the Edgeworth–Pareto hull (EPH), i.e., the maximum set with the same Pareto frontier as the original feasible set of criteria vectors. An EPH approximation method is studied that is based on the statistical accuracy estimation of the current approximation and on adaptive supplement of a metric net whose EPH approximates the desired set. The convergence of the method is proved, estimates for the convergence rate are obtained, and the efficiency of the method is studied in the case of a compact feasible set and continuous criteria functions. It is shown that the convergence rate of the method with respect to the number $k$ of iterations is no lower than $o(k^{1/\overline{\mathrm{dm}}}Y)$, where $\overline{\mathrm{dm}}Y$ is the upper metric dimension of the feasible set of criteria vectors.

Key words: multicriteria optimization, Pareto frontier, Edgeworth–Pareto hull, approximation method, statistical estimates, adaptive methods, convergence rate, metric dimension.

Full text: PDF file (1465 kB)
References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 2009, 49:12, 2006–2016

Bibliographic databases:

UDC: 519.626
Received: 29.05.2009

Citation: G. K. Kamenev, “Study of an adaptive single-phase method for approximating the multidimensional Pareto frontier in nonlinear systems”, Zh. Vychisl. Mat. Mat. Fiz., 49:12 (2009), 2103–2113; Comput. Math. Math. Phys., 49:12 (2009), 2006–2016

Citation in format AMSBIB
\Bibitem{Kam09}
\by G.~K.~Kamenev
\paper Study of an adaptive single-phase method for approximating the multidimensional Pareto frontier in nonlinear systems
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2009
\vol 49
\issue 12
\pages 2103--2113
\mathnet{http://mi.mathnet.ru/zvmmf4792}
\elib{http://elibrary.ru/item.asp?id=12989093}
\transl
\jour Comput. Math. Math. Phys.
\yr 2009
\vol 49
\issue 12
\pages 2006--2016
\crossref{https://doi.org/10.1134/S0965542509120021}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000272968700002}
\elib{http://elibrary.ru/item.asp?id=15296297}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-74549209096}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf4792
  • http://mi.mathnet.ru/eng/zvmmf/v49/i12/p2103

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. E. Berezkin, G. K. Kamenev, “Convergence analysis of two-phase methods for approximating the Edgeworth–Pareto hull in nonlinear multicriteria optimization problems”, Comput. Math. Math. Phys., 52:6 (2012), 846–854  mathnet  crossref  mathscinet  adsnasa  isi  elib  elib
    2. Hartikainen M., Miettinen K., Wiecek M.M., “PAINT: Pareto front interpolation for nonlinear multiobjective optimization”, Comput. Optim. Appl., 52:3 (2012), 845–867  crossref  mathscinet  zmath  isi  elib  scopus
    3. G. K. Kamenev, “Study of convergence rate and efficiency of two-phase methods for approximating the Edgeworth–Pareto hull”, Comput. Math. Math. Phys., 53:4 (2013), 375–385  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    4. A. I. Ryabikov, “Ersatz function method for minimizing a finite-valued function on a compact set”, Comput. Math. Math. Phys., 54:2 (2014), 206–218  mathnet  crossref  crossref  isi  elib  elib
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:256
    Full text:58
    References:35
    First page:7

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020