Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2010, Volume 50, Number 1, Pages 71–98 (Mi zvmmf4813)  

This article is cited in 1 scientific paper (total in 1 paper)

Discrete extrinsic curvatures and approximation of surfaces by polar polyhedra

V. A. Garanzha

119333 Moscow, ul. Vavilova, 40, Dorodnicyn Computing Center, RAS

Abstract: Duality principle for approximation of geometrical objects (also known as Eudoxus exhaustion method) was extended and perfected by Archimedes in his famous tractate “Measurement of circle”. The main idea of the approximation method by Archimedes is to construct a sequence of pairs of inscribed and circumscribed polygons (polyhedra) which approximate curvilinear convex body. This sequence allows to approximate length of curve, as well as area and volume of the bodies and to obtain error estimates for approximation. In this work it is shown that a sequence of pairs of locally polar polyhedra allows to construct piecewise-affine approximation to spherical Gauss map, to construct convergent point-wise approximations to mean and Gauss curvature, as well as to obtain natural discretizations of bending energies. Suggested approach can be applied to nonconvex surfaces and in the case of multiple dimensions.

Key words: polar polyhedra, discrete curvatures, DC surfaces (representable as a difference of convex functions), bending energy.

Full text: PDF file (747 kB)
References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 2010, 50:1, 65–92

Bibliographic databases:

UDC: 519.53
Received: 28.11.2008
Language:

Citation: V. A. Garanzha, “Discrete extrinsic curvatures and approximation of surfaces by polar polyhedra”, Zh. Vychisl. Mat. Mat. Fiz., 50:1 (2010), 71–98; Comput. Math. Math. Phys., 50:1 (2010), 65–92

Citation in format AMSBIB
\Bibitem{Gar10}
\by V.~A.~Garanzha
\paper Discrete extrinsic curvatures and approximation of surfaces by polar polyhedra
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2010
\vol 50
\issue 1
\pages 71--98
\mathnet{http://mi.mathnet.ru/zvmmf4813}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2681136}
\elib{https://elibrary.ru/item.asp?id=13044701}
\transl
\jour Comput. Math. Math. Phys.
\yr 2010
\vol 50
\issue 1
\pages 65--92
\crossref{https://doi.org/10.1134/S0965542510010082}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-76649086415}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf4813
  • http://mi.mathnet.ru/eng/zvmmf/v50/i1/p71

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. A. Klyachin, A. A. Shirokii, “The Delaunay triangulation for multidimensional surfaces and its approximative properties”, Russian Math. (Iz. VUZ), 56:1 (2012), 27–34  mathnet  crossref  mathscinet
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:265
    Full text:107
    References:46
    First page:4

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021