Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2010, Volume 50, Number 2, Pages 286–297 (Mi zvmmf4828)  

This article is cited in 2 scientific papers (total in 2 papers)

A modified combined grid method for solving the Dirichlet problem for the Laplace equation on a rectangular parallelepiped

E. A. Volkov

Steklov Institute of Mathematics, Russian Academy of Sciences, ul. Gubkina 8, Moskow, 119991 Russia

Abstract: A modified combined grid method is proposed for solving the Dirichlet problem for the Laplace equation on a rectangular parallelepiped. The six-point averaging operator is applied at next-to-the-boundary grid points, while the 18-point averaging operator is used instead of the 26-point one at the remaining grid points. Assuming that the boundary values given on the faces have fourth derivatives satisfying the Hölder condition, the boundary values on the edges are continuous, and their second derivatives obey a matching condition implied by the Laplace equation, the grid solution is proved to converge uniformly with the fourth order with respect to the mesh size.

Key words: numerical solution of the Dirichlet problem for Laplace’s equation, convergence of grid solutions, rectangular parallelepipedal domain.

Full text: PDF file (246 kB)
References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 2010, 50:2, 274–284

Bibliographic databases:

UDC: 519.633.2
Received: 24.07.2009

Citation: E. A. Volkov, “A modified combined grid method for solving the Dirichlet problem for the Laplace equation on a rectangular parallelepiped”, Zh. Vychisl. Mat. Mat. Fiz., 50:2 (2010), 286–297; Comput. Math. Math. Phys., 50:2 (2010), 274–284

Citation in format AMSBIB
\Bibitem{Vol10}
\by E.~A.~Volkov
\paper A modified combined grid method for solving the Dirichlet problem for the Laplace equation on a rectangular parallelepiped
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2010
\vol 50
\issue 2
\pages 286--297
\mathnet{http://mi.mathnet.ru/zvmmf4828}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2681154}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2010CMMPh..50..274V}
\transl
\jour Comput. Math. Math. Phys.
\yr 2010
\vol 50
\issue 2
\pages 274--284
\crossref{https://doi.org/10.1134/S0965542510020090}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000277336800009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77950478395}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf4828
  • http://mi.mathnet.ru/eng/zvmmf/v50/i2/p286

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. E. A. Volkov, “Application of a 14-point averaging operator in the grid method”, Comput. Math. Math. Phys., 50:12 (2010), 2023–2032  mathnet  crossref  adsnasa
    2. Comput. Math. Math. Phys., 52:6 (2012), 879–886  mathnet  crossref  isi  elib  elib
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:254
    Full text:74
    References:41
    First page:6

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022