Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2010, Volume 50, Number 3, Pages 544–556 (Mi zvmmf4850)  

This article is cited in 4 scientific papers (total in 4 papers)

A kinetic model of the Boltzmann equation for the power-law interaction potential between molecules

I. N. Larina, V. A. Rykov

Dorodnicyn Computing Center, Russian Academy of Sciences, ul. Vavilova 40, Moscow, 119333, Russia

Abstract: A model kinetic equation approximating the Boltzmann equation with a linearized collision integral is constructed to describe rarefied gas flows at moderate and low Knudsen numbers. The kinetic model describes gas flows with a power-law intermolecular interaction potential and involves five relaxation parameters. The structure of a shock wave is computed, and the results are compared with an experiment for argon.

Key words: rarefied gas, Boltzmann equation, numerical method, model kinetic equation.

Full text: PDF file (246 kB)
References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 2010, 50:3, 519–530

Bibliographic databases:

UDC: 519.634
Received: 13.07.2009

Citation: I. N. Larina, V. A. Rykov, “A kinetic model of the Boltzmann equation for the power-law interaction potential between molecules”, Zh. Vychisl. Mat. Mat. Fiz., 50:3 (2010), 544–556; Comput. Math. Math. Phys., 50:3 (2010), 519–530

Citation in format AMSBIB
\Bibitem{LarRyk10}
\by I.~N.~Larina, V.~A.~Rykov
\paper A kinetic model of the Boltzmann equation for the power-law interaction potential between molecules
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2010
\vol 50
\issue 3
\pages 544--556
\mathnet{http://mi.mathnet.ru/zvmmf4850}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2681930}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2010CMMPh..50..519L}
\transl
\jour Comput. Math. Math. Phys.
\yr 2010
\vol 50
\issue 3
\pages 519--530
\crossref{https://doi.org/10.1134/S0965542510030139}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000277337300013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77951791680}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf4850
  • http://mi.mathnet.ru/eng/zvmmf/v50/i3/p544

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. I. N. Larina, V. A. Rykov, “Nonlinear nonequilibrium kinetic model of the Boltzmann equation for monatomic gases”, Comput. Math. Math. Phys., 51:11 (2011), 1962–1972  mathnet  crossref  mathscinet  isi
    2. Titarev V.A. Shakhov E.M., “Numerical study of the Poiseuille and thermal creep flow of nitrogen in long capillaries”, 28th International Symposium on Rarefied Gas Dynamics 2012 (Zaragoza, Spain, 9–13 July 2012), v. 1, 2, AIP Conf. Proc., 1501, ed. Mareschal M. Santos A., Amer. Inst. Physics, 2012, 765–770  crossref  adsnasa  isi  scopus
    3. Titarev V.A., Shakhov E.M., “Poiseuille flow and thermal creep in a capillary tube on the basis of the kinetic R-model”, Fluid Dyn., 47:5 (2012), 661–672  crossref  mathscinet  zmath  adsnasa  isi  elib  elib  scopus
    4. Larina I.N. Rykov V.A., “Nonlinear Nonequilibrium Kinetic Model of the Boltzmann Equation for a Gas with Power-Law Interaction”, Fluid Dyn., 48:6 (2013), 837–849  crossref  mathscinet  zmath  isi  elib  scopus
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:294
    Full text:96
    References:31
    First page:3

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021