Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2010, Volume 50, Number 11, Pages 1998–2016 (Mi zvmmf4968)  

This article is cited in 3 scientific papers (total in 3 papers)

Numerical implementations of an iterative method with boundary condition splitting as applied to the nonstationary stokes problem in the gap between coaxial cylinders

M. B. Soloviev

Dorodnicyn Computing Center, Russian Academy of Sciences, ul. Vavilova 40, Moscow, 119333 Russia

Abstract: Numerical implementations of a new fast-converging iterative method with boundary condition splitting are constructed for solving the Dirichlet initial-boundary value problem for the nonstationary Stokes system in the gap between two coaxial cylinders. The problem is assumed to be axially symmetric and periodic along the cylinders. The construction is based on finite-difference approximations in time and bilinear finite-element approximations in a cylindrical coordinate system. A numerical study has revealed that the iterative methods constructed have fairly high convergence rates that do not degrade with decreasing viscosity (the error is reduced by approximately 7 times per iteration step). Moreover, the methods are second-order accurate with respect to the mesh size in the max norm for both velocity and pressure.

Key words: nonstationary Stokes problem, iterative methods with boundary condition splitting, second-order accuracy, finite-difference method, finite element method.

Full text: PDF file (350 kB)
References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 2010, 50:11, 1895–1913

Bibliographic databases:

UDC: 519.634
Received: 31.05.2010

Citation: M. B. Soloviev, “Numerical implementations of an iterative method with boundary condition splitting as applied to the nonstationary stokes problem in the gap between coaxial cylinders”, Zh. Vychisl. Mat. Mat. Fiz., 50:11 (2010), 1998–2016; Comput. Math. Math. Phys., 50:11 (2010), 1895–1913

Citation in format AMSBIB
\Bibitem{Sol10}
\by M.~B.~Soloviev
\paper Numerical implementations of an iterative method with boundary condition splitting as applied to the nonstationary stokes problem in the gap between coaxial cylinders
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2010
\vol 50
\issue 11
\pages 1998--2016
\mathnet{http://mi.mathnet.ru/zvmmf4968}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2010CMMPh..50.1895S}
\elib{https://elibrary.ru/item.asp?id=15524314}
\transl
\jour Comput. Math. Math. Phys.
\yr 2010
\vol 50
\issue 11
\pages 1895--1913
\crossref{https://doi.org/10.1134/S0965542510110138}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000284649800013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78649789533}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf4968
  • http://mi.mathnet.ru/eng/zvmmf/v50/i11/p1998

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. B. V. Pal'tsev, M. B. Soloviev, I. I. Chechel', “On the development of iterative methods with boundary condition splitting for solving boundary and initial-boundary value problems for the linearized and nonlinear Navier–Stokes equations”, Comput. Math. Math. Phys., 51:1 (2011), 68–87  mathnet  crossref  mathscinet  isi  elib
    2. B. V. Pal'tsev, “To the theory of asymptotically stable second-order accurate two-stage scheme for an inhomogeneous parabolic initial-boundary value problem”, Comput. Math. Math. Phys., 53:4 (2013), 396–430  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    3. M. B. Solov'ev, “Numerical implementation of an iterative method with boundary condition splitting for solving the nonstationary stokes problem on the basis of an asymptotically stable two-stage difference scheme”, Comput. Math. Math. Phys., 54:12 (2014), 1817–1825  mathnet  crossref  crossref  mathscinet  isi  elib  elib
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:303
    Full text:71
    References:44
    First page:5

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022