Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2005, Volume 45, Number 11, Pages 2000–2016 (Mi zvmmf568)  

This article is cited in 3 scientific papers (total in 3 papers)

The mechanism of hard excitation of self-oscillations in the case of the resonance 1:2

S. D. Glyzina, A. Yu. Kolesova, N. Kh. Rozovb

a Faculty of Mathematics, Yaroslavl State University, Sovetskaya ul. 14, Yaroslavl, 150000, Russia
b Faculty of Mechanics and Mathematics, Moscow State University, Leninskie gory, Moscow, 119992, Russia

Abstract: A method for modeling the hard excitation of self-oscillations in the case of the resonance 1:2 in a nonlocal situation using local methods is proposed. This makes it possible to reveal some characteristic features of the dynamic behavior. In particular, it is shown that, under certain conditions, the stable zero solution can coexist with a chaotic attractor.

Key words: oscillation problems, mathematical modeling, self-oscillations, chaotic attractor.

Full text: PDF file (2247 kB)
References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 2005, 45:11, 1923–1938

Bibliographic databases:
UDC: 519.6:517.926
Received: 25.10.2004

Citation: S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “The mechanism of hard excitation of self-oscillations in the case of the resonance 1:2”, Zh. Vychisl. Mat. Mat. Fiz., 45:11 (2005), 2000–2016; Comput. Math. Math. Phys., 45:11 (2005), 1923–1938

Citation in format AMSBIB
\Bibitem{GlyKolRoz05}
\by S.~D.~Glyzin, A.~Yu.~Kolesov, N.~Kh.~Rozov
\paper The mechanism of hard excitation of self-oscillations in the case of the resonance 1:2
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2005
\vol 45
\issue 11
\pages 2000--2016
\mathnet{http://mi.mathnet.ru/zvmmf568}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2203224}
\zmath{https://zbmath.org/?q=an:1108.34036}
\elib{https://elibrary.ru/item.asp?id=9144792}
\transl
\jour Comput. Math. Math. Phys.
\yr 2005
\vol 45
\issue 11
\pages 1923--1938
\elib{https://elibrary.ru/item.asp?id=13493105}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf568
  • http://mi.mathnet.ru/eng/zvmmf/v45/i11/p2000

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. Yu. Kolesov, E. F. Mishchenko, N. Kh. Rozov, “Resonance Dynamics of Nonlinear Flutter Systems”, Proc. Steklov Inst. Math., 261 (2008), 149–170  mathnet  crossref  mathscinet  zmath  isi  elib  elib
    2. A. N. Kulikov, “1 : 3 Resonance is a possible cause of nonlinear panel flutter”, Comput. Math. Math. Phys., 51:7 (2011), 1181–1193  mathnet  crossref  mathscinet  isi
    3. S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Ob odnom mekhanizme zhestkogo vozbuzhdeniya kolebanii v nelineinykh flatternykh sistemakh”, Model. i analiz inform. sistem, 21:1 (2014), 32–44  mathnet
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:239
    Full text:94
    References:23
    First page:1

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021