Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2005, Volume 45, Number 9, Pages 1587–1593 (Mi zvmmf596)  

This article is cited in 1 scientific paper (total in 1 paper)

On the convergence in $C^1_h$ of the difference solution to the Laplace equation in a rectangular parallelepiped

E. A. Volkov

Steklov Mathematical Institute, Russian Academy of Sciences

Abstract: The Dirichlet problem for the Laplace equation in a rectangular parallelepiped is considered. It is assumed that the boundary values have the third derivatives on the faces that satisfy the Hцlder condition, the boundary values are continuous on the edges, and their second derivatives satisfy the compatibility condition that is implied by the Laplace equation. The uniform convergence of the grid solution of the Dirichlet problem and of its difference derivative on the cubic grid at the rate $O(h^2)$, where $h$ is the grid size, is proved. A piecewise polylinear continuation of the grid solution and of its difference derivative uniformly approximate the solution of the Dirichlet problem and its second derivative on the close parallelepiped with the second order of accuracy with respect to $h$.

Key words: numerical solution to the Laplace equation, convergence of grid solutions, rectangular parallelepiped domain.

Full text: PDF file (779 kB)
References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 2005, 45:9, 1531–1537

Bibliographic databases:
UDC: 519.632.4
Received: 12.03.2004

Citation: E. A. Volkov, “On the convergence in $C^1_h$ of the difference solution to the Laplace equation in a rectangular parallelepiped”, Zh. Vychisl. Mat. Mat. Fiz., 45:9 (2005), 1587–1593; Comput. Math. Math. Phys., 45:9 (2005), 1531–1537

Citation in format AMSBIB
\Bibitem{Vol05}
\by E.~A.~Volkov
\paper On the convergence in $C^1_h$ of the difference solution to the Laplace equation in a rectangular parallelepiped
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2005
\vol 45
\issue 9
\pages 1587--1593
\mathnet{http://mi.mathnet.ru/zvmmf596}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2216070}
\zmath{https://zbmath.org/?q=an:1117.65364}
\transl
\jour Comput. Math. Math. Phys.
\yr 2005
\vol 45
\issue 9
\pages 1531--1537


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf596
  • http://mi.mathnet.ru/eng/zvmmf/v45/i9/p1587

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Dosiyev A.A. Sadeghi H.M.-M., “On a highly accurate approximation of the first and pure second derivatives of the Laplace equation in a rectangular parallelpiped”, Adv. Differ. Equ., 2016, 145  crossref  mathscinet  isi  elib  scopus
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:219
    Full text:84
    References:41
    First page:1

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021