Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2009, Volume 49, Number 1, Pages 200–208 (Mi zvmmf62)  

This article is cited in 2 scientific papers (total in 2 papers)

Algebra over estimation algorithms: Normalization with respect to the interval

A. G. D'yakonov

Faculty of Computational Mathematics and Cybernetics, Moscow State University, Moscow, 119992, Russia

Abstract: Algebra over estimation algorithms with addition, multiplication by a constant, and normalization operations is investigated. Normalization is interpreted as a linear (with respect to each row) transformation of the matrix of estimates that takes the maximum entry of the row to unity and the minimum entry to zero. The algebraic closure is described, a formula for its dimension is obtained, and correctness criteria are formulated.

Key words: pattern recognition, estimation algorithm, matrices of estimates, correct algorithm, normalization, algebra over algorithms.

Full text: PDF file (1088 kB)
References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 2009, 49:1, 194–202

Bibliographic databases:

UDC: 519.71
Received: 19.02.2008

Citation: A. G. D'yakonov, “Algebra over estimation algorithms: Normalization with respect to the interval”, Zh. Vychisl. Mat. Mat. Fiz., 49:1 (2009), 200–208; Comput. Math. Math. Phys., 49:1 (2009), 194–202

Citation in format AMSBIB
\Bibitem{Dya09}
\by A.~G.~D'yakonov
\paper Algebra over estimation algorithms: Normalization with respect to the interval
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2009
\vol 49
\issue 1
\pages 200--208
\mathnet{http://mi.mathnet.ru/zvmmf62}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2559756}
\transl
\jour Comput. Math. Math. Phys.
\yr 2009
\vol 49
\issue 1
\pages 194--202
\crossref{https://doi.org/10.1134/S096554250901014X}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000263128900014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-59849107927}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf62
  • http://mi.mathnet.ru/eng/zvmmf/v49/i1/p200

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. V. Ablameyko, A. S. Biryukov, A. A. Dokukin, A. G. D'yakonov, Yu. I. Zhuravlev, V. V. Krasnoproshin, V. A. Obraztsov, M. Yu. Romanov, V. V. Ryazanov, “Practical algorithms for algebraic and logical correction in precedent-based recognition problems”, Comput. Math. Math. Phys., 54:12 (2014), 1915–1928  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    2. M. V. Grishko, A. E. Dyusembaev, “Construction of a correct algorithm and spatial neural network for recognition problems with binary data”, Comput. Math. Math. Phys., 58:10 (2018), 1673–1686  mathnet  crossref  crossref  isi  elib
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:286
    Full text:103
    References:24
    First page:10

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021