Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 1973, Volume 13, Number 1, Pages 204–210 (Mi zvmmf6470)  

This article is cited in 4 scientific papers (total in 4 papers)

Scientific communications

The problem of constructing linear regularizing algorithms in Banach spaces

A. B. Bakushinskii

Moscow

Full text: PDF file (825 kB)

English version:
USSR Computational Mathematics and Mathematical Physics, 1973, 13:1, 261–270

Bibliographic databases:

UDC: 518:517.948
MSC: Primary 65J05; Secondary 65M30, 65H10
Received: 13.09.1971

Citation: A. B. Bakushinskii, “The problem of constructing linear regularizing algorithms in Banach spaces”, Zh. Vychisl. Mat. Mat. Fiz., 13:1 (1973), 204–210; U.S.S.R. Comput. Math. Math. Phys., 13:1 (1973), 261–270

Citation in format AMSBIB
\Bibitem{Bak73}
\by A.~B.~Bakushinskii
\paper The problem of constructing linear regularizing algorithms in Banach spaces
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 1973
\vol 13
\issue 1
\pages 204--210
\mathnet{http://mi.mathnet.ru/zvmmf6470}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=0473880}
\zmath{https://zbmath.org/?q=an:0303.65055}
\transl
\jour U.S.S.R. Comput. Math. Math. Phys.
\yr 1973
\vol 13
\issue 1
\pages 261--270
\crossref{https://doi.org/10.1016/0041-5553(74)90020-2}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf6470
  • http://mi.mathnet.ru/eng/zvmmf/v13/i1/p204

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. E. N. Domanskii, “On the equivalence of convergence of a regularizing algorithm to the existence of a solution to an ill-posed problem”, Russian Math. Surveys, 42:5 (1987), 123–144  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    2. M. Yu. Kokurin, “Source representability and estimates for the rate of convergence of methods for the regularization of linear equations in a Banach space. I”, Russian Math. (Iz. VUZ), 45:8 (2001), 49–57  mathnet  mathscinet  zmath
    3. M. Yu. Kokurin, V. V. Klyuchev, “Neobkhodimye usloviya skhodimosti s dannoi skorostyu iteratsionnykh metodov resheniya lineinykh nekorrektnykh operatornykh uravnenii v banakhovom prostranstve”, Sib. zhurn. vychisl. matem., 5:4 (2002), 295–310  mathnet  zmath
    4. M. Yu. Kokurin, O. V. Karabanova, “Regularized projection methods for solving linear operator equations of the first kind in a Banach space”, Russian Math. (Iz. VUZ), 47:7 (2003), 34–55  mathnet  mathscinet  zmath
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:149
    Full text:76
    First page:1

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022