RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2005, Volume 45, Number 4, Pages 574–586 (Mi zvmmf663)  

This article is cited in 3 scientific papers (total in 3 papers)

A method for computing the generalized hypergeometric function $ _pF_{p-1}(a_1,…,a_p;b_1,…,b_{p-1};1)$ in terms of the riemann zeta function

S. L. Skorokhodov

Dorodnicyn Computing Center, Russian Academy of Sciences, ul. Vavilova 40, Moscow, 119991, Russia

Abstract: A method is proposed for evaluating the generalized hypergeometric function $ _pF_{p-1}(a_1,…,a_p;b_1,…,b_{p-1};1)=\sum_{k=0}^\infty f_k$ in terms of the Riemann zeta function $\zeta(s)$ and the Hurwitz zeta function $\zeta(1/2,s)$. By analyzing an asymptotic expansion of the coefficients $f_k$ as $k\to\infty$, an expansion of $ _pF_{p-1}$ is constructed in the form of combinations of $\zeta(s)$ and $\zeta(1/2,s)$ with explicit coefficients expressed in terms of generalized Bernoulli polynomials. The convergence of the expansion can be considerably accelerated by choosing optimal values of two control parameters. The efficiency of the method is demonstrated through a great deal of computations and comparisons with Mathematica and Maple.

Key words: generalized hypergeometric function of unit argument, numerical algorithm, Riemann zeta function, Hurwitz zeta function, generalized Bernoulli polynomials.

Full text: PDF file (1566 kB)
References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 2005, 45:4, 550–562

Bibliographic databases:
UDC: 519.6:517.588
Received: 06.12.2004

Citation: S. L. Skorokhodov, “A method for computing the generalized hypergeometric function $ _pF_{p-1}(a_1,…,a_p;b_1,…,b_{p-1};1)$ in terms of the riemann zeta function”, Zh. Vychisl. Mat. Mat. Fiz., 45:4 (2005), 574–586; Comput. Math. Math. Phys., 45:4 (2005), 550–562

Citation in format AMSBIB
\Bibitem{Sko05}
\by S.~L.~Skorokhodov
\paper A method for computing the generalized hypergeometric function ${}_pF_{p-1}(a_1,\dots,a_p;b_1,\dots,b_{p-1};1)$ in terms of the riemann zeta function
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2005
\vol 45
\issue 4
\pages 574--586
\mathnet{http://mi.mathnet.ru/zvmmf663}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2161615}
\zmath{https://zbmath.org/?q=an:1077.33008}
\elib{http://elibrary.ru/item.asp?id=9139256}
\transl
\jour Comput. Math. Math. Phys.
\yr 2005
\vol 45
\issue 4
\pages 550--562
\elib{http://elibrary.ru/item.asp?id=13489960}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf663
  • http://mi.mathnet.ru/eng/zvmmf/v45/i4/p574

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Bogolubsky A., Skorokhodov S.L., “Fast evaluation of the hypergeometric function F-p(p-1,)(a; b; z) at the singular point z=1 by means of the Hurwitz zeta function zeta(alpha, s)”, Programming and Computer Software, 32:3 (2006), 145–153  crossref  mathscinet  zmath  isi  scopus
    2. Willis J.L., “Acceleration of generalized hypergeometric functions through precise remainder asymptotics”, Numer Algorithms, 59:3 (2012), 447–485  crossref  mathscinet  zmath  isi  elib  scopus
    3. Huang Zh.-W., Liu J., “Numexp: Numerical Epsilon Expansion of Hypergeometric Functions”, Comput. Phys. Commun., 184:8 (2013), 1973–1980  crossref  zmath  adsnasa  isi  elib  scopus
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:611
    Full text:191
    References:57
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019