RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2005, Volume 45, Number 2, Pages 315–326 (Mi zvmmf708)  

This article is cited in 21 scientific papers (total in 21 papers)

Approximate inversion of matrices in the process of solving a hypersingular integral equation

I. V. Oseledets, E. E. Tyrtyshnikov

Institute of Numerical Mathematics, Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119333, Russia

Abstract: A method is proposed for approximate inversion of large matrices represented as sums of tensor products of smaller matrices. The method incorporates a modification, found by the authors, of the Newton–Hotelling–Schulz algorithm and uses a number of recently developed techniques for data compression and data structuring based on nonlinear approximations, such as tensor-product, low-rank, or wavelet approximations. The efficiency of the method is demonstrated with the help of matrices arising in the numerical solution of a hypersingular integral equation (namely, the Prandtl equation) on a square.

Key words: hypersingular integral equation, numerical method for solution, fast approximate matrix inversion, nonuniform grids.

Full text: PDF file (1685 kB)
References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 2005, 45:2, 302–313

Bibliographic databases:

Document Type: Article
UDC: 519.642.7
Received: 01.07.2004

Citation: I. V. Oseledets, E. E. Tyrtyshnikov, “Approximate inversion of matrices in the process of solving a hypersingular integral equation”, Zh. Vychisl. Mat. Mat. Fiz., 45:2 (2005), 315–326; Comput. Math. Math. Phys., 45:2 (2005), 302–313

Citation in format AMSBIB
\Bibitem{OseTyr05}
\by I.~V.~Oseledets, E.~E.~Tyrtyshnikov
\paper Approximate inversion of matrices in the process of solving a~hypersingular integral equation
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2005
\vol 45
\issue 2
\pages 315--326
\mathnet{http://mi.mathnet.ru/zvmmf708}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2158672}
\zmath{https://zbmath.org/?q=an:1073.65569}
\elib{http://elibrary.ru/item.asp?id=9131843}
\transl
\jour Comput. Math. Math. Phys.
\yr 2005
\vol 45
\issue 2
\pages 302--313
\elib{http://elibrary.ru/item.asp?id=13492649}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf708
  • http://mi.mathnet.ru/eng/zvmmf/v45/i2/p315

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Olshevsky V., Oseledets I., Tyrtyshnikov E., “Tensor properties of multilevel Toeplitz and related matrices”, Linear Algebra Appl., 412:1 (2006), 1–21  crossref  mathscinet  zmath  isi  elib
    2. Hackbusch W., Khoromskij B.N., Tyrtyshnikov E.E., “Approximate iterations for structured matrices”, Numer. Math., 109:3 (2008), 365–383  crossref  mathscinet  zmath  isi  elib
    3. D. V. Savostyanov, E. E. Tyrtyshnikov, “Approximate multiplication of tensor matrices based on the individual filtering of factors”, Comput. Math. Math. Phys., 49:10 (2009), 1662–1677  mathnet  crossref  isi  elib  elib
    4. Oseledets I.V., “Approximation of matrices with logarithmic number of parameters”, Dokl. Math., 80:2 (2009), 653–654  mathnet  crossref  zmath  isi  elib  elib
    5. Zamarashkin N.L., Oseledets I.V., Tyrtyshnikov E.E., “The tensor structure of the inverse of a banded Toeplitz matrix”, Dokl. Math., 80:2 (2009), 669–670  mathnet  crossref  mathscinet  zmath  isi  elib  elib
    6. Oseledets I.V., Savostyanov D.V., Tyrtyshnikov E.E., “Linear algebra for tensor problems”, Computing, 85:3 (2009), 169–188  crossref  mathscinet  zmath  isi  elib
    7. Boikov I.V., Stasyuk B.M., Tarasov D.V., “Priblizhennoe reshenie nekotorykh klassov gipersingulyarnykh integralnykh uravnenii”, Izv. vuzov. Povolzhskii region. Fiziko-matematicheskie nauki, 2009, no. 1, 100–112
    8. O. S. Lebedeva, “Block tensor conjugate gradient-type method for Rayleigh quotient minimization in two-dimensional case”, Comput. Math. Math. Phys., 50:5 (2010), 749–765  mathnet  crossref  adsnasa  isi  elib  elib
    9. Mastronardi N., Ng M., Tyrtyshnikov E.E., “Decay in functions of multiband matrices”, SIAM J. Matrix Anal. Appl., 31:5 (2010), 2721–2737  crossref  mathscinet  zmath  isi  elib
    10. Oseledets I.V., Savostyanov D.V., Tyrtyshnikov E.E., “Cross approximation in tensor electron density computations”, Numer. Linear Algebra Appl., 17:6 (2010), 935–952  crossref  mathscinet  zmath  isi  elib
    11. Oseledets I.V., “Approximation of $2^d\times 2^d$ matrices using tensor decomposition”, SIAM J. Matrix Anal. Appl., 31:4 (2010), 2130–2145  crossref  mathscinet  zmath  isi
    12. Boykov I.V., Ventsel E.S., Boykova A.I., “An approximate solution of hypersingular integral equations”, Appl. Numer. Math., 60:6 (2010), 607–628  crossref  mathscinet  zmath  isi  elib
    13. Pan V.Y., Qian Guoliang, “Randomized preprocessing of homogeneous linear systems of equations”, Linear Algebra Appl., 432:12 (2010), 3272–3318  crossref  mathscinet  zmath  isi  elib
    14. Matthies H.G., Zander E., “Solving Stochastic Systems with Low-Rank Tensor Compression”, Linear Alg. Appl., 436:10, SI (2012), 3819–3838  crossref  mathscinet  zmath  isi  elib
    15. Oseledets I.V., Dolgov S.V., “Solution of Linear Systems and Matrix Inversion in the Tt-Format”, SIAM J. Sci. Comput., 34:5 (2012), A2718–A2739  crossref  mathscinet  zmath  isi
    16. I. A. Blatov, N. V. Rogova, “Application of semiorthogonal spline wavelets and the Galerkin method to the numerical simulation of thin wire antennas”, Comput. Math. Math. Phys., 53:5 (2013), 564–572  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    17. Soheili A.R., Sofeymani F., Petkovic M.D., “On the Computation of Weighted Moore-Penrose Inverse Using a High-Order Matrix Method”, Comput. Math. Appl., 66:11 (2013), 2344–2351  crossref  mathscinet  zmath  isi  elib
    18. Soleymani F., Stanimirovic P.S., “A Note on the Stability of a Pth Order Iteration for Finding Generalized Inverses”, Appl. Math. Lett., 28 (2014), 77–81  crossref  mathscinet  zmath  isi  elib
    19. Haghani F.Kh., Soleymani F., “A New High-Order Stable Numerical Method for Matrix Inversion”, Sci. World J., 2014, 830564  crossref  isi
    20. Hackbusch W., “Numerical Tensor Calculus”, Acta Numer., 23 (2014), 651–742  crossref  mathscinet  isi  elib
    21. Stanimirovic P.S., Soleymani F., Haghani F.Kh., “Computing Outer Inverses By Scaled Matrix Iterations”, J. Comput. Appl. Math., 296 (2016), 89–101  crossref  mathscinet  zmath  isi  elib
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:654
    Full text:267
    References:29
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2018