Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 1968, Volume 8, Number 1, Pages 136–157 (Mi zvmmf7280)  

This article is cited in 11 scientific papers (total in 11 papers)

The convergence of finite-dimensional approximations (in the problem of the optimal heating of an inhomogeneous body of arbitrary shape)

V. I. Plotnikov

Gor'kii

Full text: PDF file (2013 kB)

English version:
USSR Computational Mathematics and Mathematical Physics, 1968, 8:1, 182–211

Bibliographic databases:

UDC: 519.3:51:62-50
Received: 06.10.1966

Citation: V. I. Plotnikov, “The convergence of finite-dimensional approximations (in the problem of the optimal heating of an inhomogeneous body of arbitrary shape)”, Zh. Vychisl. Mat. Mat. Fiz., 8:1 (1968), 136–157; U.S.S.R. Comput. Math. Math. Phys., 8:1 (1968), 182–211

Citation in format AMSBIB
\Bibitem{Plo68}
\by V.~I.~Plotnikov
\paper The convergence of finite-dimensional approximations (in the problem of the optimal heating of an inhomogeneous body of arbitrary shape)
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 1968
\vol 8
\issue 1
\pages 136--157
\mathnet{http://mi.mathnet.ru/zvmmf7280}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=0229112}
\zmath{https://zbmath.org/?q=an:0167.40502}
\transl
\jour U.S.S.R. Comput. Math. Math. Phys.
\yr 1968
\vol 8
\issue 1
\pages 182--211
\crossref{https://doi.org/10.1016/0041-5553(68)90011-6}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf7280
  • http://mi.mathnet.ru/eng/zvmmf/v8/i1/p136

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. I. Plotnikov, “Existence theorems on optimizing functions for optimal systems with distributed parameters”, Math. USSR-Izv., 4:3 (1970), 697–719  mathnet  crossref  mathscinet  zmath
    2. E. Ya. Rapoport, M. Yu. Livshits, Yu. E. Pleshivtseva, “Konechnomernye priblizheniya v odnom klasse zadach optimizatsii sistem s raspredelennymi parametrami”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 4, SamGTU, Samara, 1996, 24–36  mathnet  crossref  elib
    3. N. D. Morozkin, “The convergence of finite-dimensional approximations in the problem of the optimal one-dimensional heating taking phase constraints into account”, Comput. Math. Math. Phys., 36:10 (1996), 1331–1339  mathnet  mathscinet  zmath  isi
    4. M. I. Sumin, “A regularized gradient dual method for the inverse problem of a final observation for a parabolic equation”, Comput. Math. Math. Phys., 44:11 (2004), 1903–1921  mathnet  mathscinet  zmath  elib
    5. M. I. Sumin, “Duality-based regularization in a linear convex mathematical programming problem”, Comput. Math. Math. Phys., 47:4 (2007), 579–600  mathnet  crossref  mathscinet  zmath  elib  elib
    6. A. V. Chernov, “Smooth finite-dimensional approximations of distributed optimization problems via control discretization”, Comput. Math. Math. Phys., 53:12 (2013), 1839–1852  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    7. V. I. Agoshkov, I. S. Novikov, “Solution of the pollutant concentration optimization problem with restrictions on the intensity of sources”, Comput. Math. Math. Phys., 56:1 (2016), 26–42  mathnet  crossref  crossref  isi  elib
    8. F. A. Kuterin, M. I. Sumin, “Regulyarizovannyi iteratsionnyi printsip maksimuma Pontryagina v optimalnom upravlenii. II. Optimizatsiya raspredelennoi sistemy”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 27:1 (2017), 26–41  mathnet  crossref  elib
    9. A. I. Egorov, L. N. Znamenskaya, “Control of a heat conduction process with a quadratic cost functional”, Comput. Math. Math. Phys., 57:12 (2017), 2005–2016  mathnet  crossref  crossref  isi  elib
    10. Sumin M.I., “Regularized Lagrange Principle and Pontryagin Maximum Principle in Optimal Control and Inverse Problems”, IFAC PAPERSONLINE, 51:32 (2018), 871–876  crossref  isi
    11. M. I. Sumin, “Zachem nuzhna regulyarizatsiya printsipa Lagranzha i printsipa maksimuma Pontryagina i chto ona daet”, Vestnik Tambovskogo universiteta. Seriya: estestvennye i tekhnicheskie nauki, 23:124 (2018), 757–775  mathnet  crossref  elib
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:144
    Full text:69
    First page:1

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021