RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 1966, Volume 6, Number 5, Pages 787–823 (Mi zvmmf7415)  

This article is cited in 16 scientific papers (total in 16 papers)

Constrained minimization methods

E. S. Levitin, B. T. Polyak

Moscow

Full text: PDF file (4310 kB)

English version:
USSR Computational Mathematics and Mathematical Physics, 1966, 6:5, 1–50

Bibliographic databases:

UDC: 519.3
Received: 24.09.1965

Citation: E. S. Levitin, B. T. Polyak, “Constrained minimization methods”, Zh. Vychisl. Mat. Mat. Fiz., 6:5 (1966), 787–823; U.S.S.R. Comput. Math. Math. Phys., 6:5 (1966), 1–50

Citation in format AMSBIB
\Bibitem{LevPol66}
\by E.~S.~Levitin, B.~T.~Polyak
\paper Constrained minimization methods
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 1966
\vol 6
\issue 5
\pages 787--823
\mathnet{http://mi.mathnet.ru/zvmmf7415}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=0211590}
\zmath{https://zbmath.org/?q=an:0184.38902}
\transl
\jour U.S.S.R. Comput. Math. Math. Phys.
\yr 1966
\vol 6
\issue 5
\pages 1--50
\crossref{https://doi.org/10.1016/0041-5553(66)90114-5}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf7415
  • http://mi.mathnet.ru/eng/zvmmf/v6/i5/p787

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Yu. I. Lyubich, G. D. Maistrovskii, “The general theory of relaxation processes for convex functionals”, Russian Math. Surveys, 25:1 (1970), 57–117  mathnet  crossref  mathscinet  zmath
    2. V. F. Dem'yanov, V. N. Malozemov, “On the theory of non-linear minimax problems”, Russian Math. Surveys, 26:3 (1971), 57–115  mathnet  crossref  mathscinet  zmath
    3. Yu. G. Evtushenko, V. G. Zhadan, “Barrier-projective methods for nonlinear programming”, Comput. Math. Math. Phys., 34:5 (1994), 579–590  mathnet  mathscinet  zmath  isi
    4. B. T. Polyak, “Local programming”, Comput. Math. Math. Phys., 41:9 (2001), 1259–1266  mathnet  mathscinet  zmath  elib
    5. J. Math. Sci. (N. Y.), 133:4 (2006), 1513–1523  mathnet  crossref  mathscinet  zmath  elib
    6. O. V. Khamisov, “Global optimization of functions with concave support minorant”, Comput. Math. Math. Phys., 44:9 (2004), 1473–1483  mathnet  mathscinet  zmath
    7. Gorbunov V.K., Lutoshkin I.V., “Development and experience of using the parameterization method in singular problems of dynamic optimization”, Journal of Computer and Systems Sciences International, 43:5 (2004), 725–742  isi
    8. I. Ya. Zabotin, R. S. Yarullin, “One approach to constructing cutting algorithms with dropping of cutting planes”, Russian Math. (Iz. VUZ), 57:3 (2013), 60–64  mathnet  crossref
    9. Ceng L.C. Chou C.Y., “On the Relaxed Hybrid-Extragradient Method for Solving Constrained Convex Minimization Problems in Hilbert Spaces”, Taiwan. J. Math., 17:3 (2013), 911–936  crossref  mathscinet  zmath  isi  elib
    10. Tian M., Huang L.-H., “Iterative Methods for Constrained Convex Minimization Problem in Hilbert Spaces”, Fixed Point Theory Appl., 2013, 105  crossref  mathscinet  isi
    11. I. Ya. Zabotin, R. S. Yarullin, “Metod otsechenii s obnovleniem pogruzhayuschikh mnozhestv i otsenki tochnosti resheniya”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 155, no. 2, Izd-vo Kazanskogo un-ta, Kazan, 2013, 54–64  mathnet
    12. G. E. Ivanov, M. S. Lopushanski, “Well-posedness of approximation and optimization problems for weakly convex sets and functions”, J. Math. Sci., 209:1 (2015), 66–87  mathnet  crossref  mathscinet
    13. I. Ya. Zabotin, R. S. Yarullin, “Algoritm otsechenii s approksimatsiei nadgrafika”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 155, no. 4, Izd-vo Kazanskogo un-ta, Kazan, 2013, 48–54  mathnet
    14. I. Ya. Zabotin, R. S. Yarullin, “Metod otsechenii s obnovleniem approksimiruyuschikh mnozhestv i ego kombinirovanie s drugimi algoritmami”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 10 (2014), 13–26  mathnet
    15. I. V. Konnov, “A method of bi-coordinate variations with tolerances and its convergence”, Russian Math. (Iz. VUZ), 60:1 (2016), 68–72  mathnet  crossref  isi
    16. I. V. Konnov, “Conditioned gradient method without line-search”, Russian Math. (Iz. VUZ), 62:1 (2018), 82–85  mathnet  crossref  isi
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:1639
    Full text:842
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019